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AsstrACT. Problems involving chains of irreducible factorizations in atomic in-
tegral domains and monoids have been the focus of much recent literat8re. If
is a commutative cancellative atomic monoid, then the catenary deg&@lef
notedc(S)) and the tame degree 8f(denoted(S)) are combinatorial invariants

of S which describe the behavior of chains of factorizations. In this note, we
describe methods to compute batl$) andt(S) whenM is a finitely generated
commutative cancellative monoid.

1. INTRODUCTION

The study of combinatorial properties of non-unique factorizations in integral
domains and monoids has become an active area of interest (see [9] and its refer-
ences). Early work in this area focused on study ofdlaesticity of factorization
which describes non-unique factorizations in a “coarse” sense (see for instance [2]
where the first, second and fifth authors of the current paper construct an algorithm
to compute the elasticity of a Krull monoid with finite divisor class group). Re-
cently, the study of more precise invariants associated to non-unique factorizations
has become popular (see for instance the papers [6], [7], [8], [5] and [11]). The two
principal such invariants are known as ttegenary degreand thetame degreeA
summary of the up to date status of research concerning these constants can be
found in [9, Chapters 6.4 and 6.5], but needless to say, exact computations of these
constants (especially in the case of the tame degree) are not abundant. In Section
3 of this paper, we will describe two methods to compute the catenary degree of a
finitely generated commutative cancellative mon8idThese methods are based
on the computation of a minimal presentatiorSpfand we review these computa-
tions in Section 2. The material on presentations draws heavily on results from [3]
and [14]. Our computations with the catenary degree will lead to a similar method
in Section 4 to compute the tame degre&ofle close Section 4 with several ex-
amples illustrating the functionality of our results. All programming involving our
algorithms was implemented @AP [17]. While consideration of the finitely gen-
erated case my seem to be a strong restriction, many classes of monoids, such as
numerical monoids (see [1]), block monoids over finite abelian groups (see [16]),
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and Diophantine monoids (see [4]) can be studied under this assumption. Since
block monoids fall on this list, our methods are applicable to any Krull monoid
whose divisor class group contains finitely many prime divisors (see [9, Theorem
2.5.8)).

We open with some notation and definitior8.will always denote a commu-
tative cancellative monoid with set of uni®*. Since units are not relevant to the
study of the factorization properties 8f by passing (if necessary) to the quotient
monoidS/S*, we can always assume tlgis reduced(i.e.,| S* |= 1). We assume
throughout thatny, .. ., np} is the minimal system of generators®f The map

¢ NP> S o(a,...,ap) =an + -+ + apnp

is a monoid homomorphism, known as tlaetorization homomorphisof S. Let
o be its kernel congruence, that &b if and only if p(a) = ¢(b). ThenS is
isomorphic toNP/o and forn € S, the setp™1(n) is the set ofactorizationsof n.
Under our hypothesis, this set is always finite (see [14]).

If (ay,...,ap) € ¢71(n), then of course = a;ny + - - - + apnp and thelengthof
the factorizatiora = (ay,...,ap)islal = ap +--- + ap. Forz=(z1,...,2p),7 =
(Z,.--,2,) € NPwrite

gcdz Z) = (min{zy, Z;}, . .., min{z, z'p})

and ,
—=z-Z.
Z/
Define
zZ

z
gcde z) |’ |gede 2) } ’
to be thedistancebetweerz andz'. The basic properties of the distance function
can be found in [9, Proposition 1.2.5]. Thepportof z € NP is defined as usual by

suppp ={ie{l,....p}lz #0}.

Givenn € S andz Z € ¢~1(n), then anN-chain of factorizationfrom zto 7 is
a sequencey, ...,z € ¢ X(s) such thaty = 7,z = Z and dg, z.,1) < N for all i.
The catenary degreef n, c(n), is the minimalN € N U {oo} such that for any two
factorizationsz, Z € ¢~1(n), there is arN-chain fromzto Z. The catenary degree
of S, denoted by &), is defined by

c(S) = sudc(n) | ne S}.

Thetame degreés(S’, X) of S’ € SandX C NP is the minimum of alN € NU{co}

such that for alls € S’, z € ¢~ 1(s) andx € X such thats — ¢(x) € S, there
existsZ € ¢ 1(s) such thatx < Z and d¢ Z) < N. For ease of notation, we
write ts(S’, X) instead of (S, {x}), and S, X) instead of §(S, X). The monoid

S is said to bdocally tameif t(S, n;) is finite for alli € {1,..., p}, andtameif

t(S) = t(S,{ny, ..., np}) < co. Clearly, asS is finitely generated, both concepts are
equivalent. This is not the case in general for non-finitely generated monoids (see
[9, Theorem 1.6.7].

’

diz?Z) = max{
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2. PRESENTATIONS OF FINITELY GENERATED MONOIDS

By Redei’s theorem (see [12]), every finitely generated commutative monoid is
finitely presented. That is, there exigts= {(a1, b1), ..., (a;, b))} € NP x NP such
that the kernel congruence @fis the least congruence containipg In [14] an
algorithm for finding a minimal presentation fBris given, that is, a set generating
o such that none of its proper subsets generatédle review briefly this procedure.
For everyn € S, defineG,, to be the graph with vertices

Vh={ni|n-nj €S}

and whose edges are
En = {ninj | n—(nj + n;) € S}.

Givens € S anda,b € go_l(s), we write aRb if there exists a chaiag,...,ax €
¢~ 1(s) such that

eqy=aa&=>hb,

e forallie{l,...,k— 1}, supp&) N supp&1) # 0.

It can be shown that the number of connected componeitég obincides with

the number oR-classes op~1(n). For everyn € S, definep,, in the following way.

e If G, is connected, then sgf, = 0.
e If G, is not connected arl, . .., Ry are the diferentR-classes op1(n),
then chooseg; € R; for alli € {1,...,k} and sepn = {(z1, 2), ..., (z1, )}
Thenp = Unes pn is @ minimal presentation & (moreover, in this way you can
construct all minimal presentations f8). There are finitely many elemermisn S
for which G, is not connected.

There is another approach for the construction of a minimal presentati&) for
which is related to the set of nonnegative solutions of a system of linear Diophan-
tine equations. Under the standing hypotheSisan be embedded I x Zq, x
.-+ X Zq, for some positive integells d, . . ., d; with di|dy|- - - |d; (See for instance
[15]). Sony,...,np can be viewed as elementsZh x Zg, X -+ X Zg,. Let M be
the subgroup ofP whose defining equations are

NiXy + -+ +NpXp =0
(where this is understood to lket+ r equations and zero is the zero@f x Zg, x
.-+ X Zg,). It follows that (see for instance [15§) = Ker(p) =~m, Where
~m={(@,b) e NPxNP|a-be M}.

The set of irreducibles ofy, 7 (~v), is the set of nontrivial minimal elements with
respect to the usual partial orderon NP x NP, From [15, Chapter 8], it can be

shown that (X1, . .., Xp), (Y1,...,Yp)) € Z(~m) ifand only if (X1,..., Xp, Y1, ..., ¥p)
is a minimal nontrivial nonnegative solution to the system of equations

Q) MiXg + -+ NpXp — N1y1 — - - = Npyp = 0.

The kernel congruence af is generated by (~y) as a monoid, and thus as a
congruence. This means thapifz) = ¢(Z),then g Z) = Z!‘zl(a, b)) with (g, b)) €
I(~wn) foralli.
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Remarkl. Usually if p is @ minimal presentation, then the s&t\) is larger

and contains much more information. The reader can check this in the examples
given in the next sections. However, it is easy to prove ffi{aty) contains all
possible minimal presentations 8f In order to see this, define the following
relation onS: fora,be S,a <g bif a+ c = bfor somec € S. We usea <g b

to denotea <gs b anda # b. The reader can check thgg is reflexive, transitive
and antisymmetric sinc8 is a cancellative and reduced monoid. Lath) be an
element in a minimal presentatiprof S. Assume thatd, b) ¢ 7(~wm). As the set of
irreducibles generatesas a monoid, this in particular means that, there must be an
element &,b’) € 7(~w) such that&',b’) < (a,b). Thuse(@) = ¢(b’) <s ¢(a) =

¢(b). As p generategr as a congruence, there exists a sequence ., u; € NP
such thate’ = uoUyo---ou_10U = b" and (i, ui;1) = (& + vi, b + v) with
(a,b) epuptforallie(l,...,t —1) wherep ! = {(b,a) | (a,b) € p}. But then
e(@) = (@) + p(u) = (b)) + p(u). Hencep(a) <s ¢(&) <s ¢(s), which leads

to (&, b)) # (a b) for anyi. This would imply that &, b) can be obtained from the
rest of elements ip, contradicting the minimality gb.

3. THE CATENARY DEGREE IN FINITELY GENERATED COMMUTATIVE CANCELLATIVE MONOIDS

Recall (as illustrated above) thatgdfis a minimal presentation fd8 (that is,
a minimal system of generators @fas a congruence), then wheneger', there
existszy, ..., z € NP in such a way that

Z1=200210 0% 10Z% =27

and @, z.1) = (a + u;, by + u;) for someu; € NP and @, b)) € p U p~L. Notice that
if (a,b) € p U p~L, then the set supp) N suppb) is empty, and thus ged(b) = 0.
This in particular implies that @(b) = max|al, |b|}. Observe also that d& u, b +
u) = d(a,b). Thus in the above cham, ..., z, the distance between two adjacent
elements is bounded by miga{ | (a,b) € p U p~* for someb € NP},

From the above remark, we obtain the following.

Proposition 2. Let|p| = max|al | (a,b) € p U p~1 for some be NP}. Then
c(S) < pl.

By using this together with Lambert’s bound [10] for a single linear homoge-
neous Diophantine equation, we obtain this consequence for numerical monoids.

Corollary 3. Assume thaty.. ., np are positive integers. Then

c((ny,...,Np)) <maxny,...,Np}.
Proof. Let S = (ny,...,np) and letp be a minimal presentation &. As we
have seen above, ia(b) € p, then @, b) € 7(~n), or in other words, if§ b) =
((@g,...,ap),(by,...,bp)), then @y,...,ap,by,...,bp)is a minimal solution to the
equation
By Lambert’s bound (see [10]), we have tlgat+ ... + ap < maxny,...,np} and
by +...+bp <maxny,...,np}. Thuslp] < maxny,...,Nnp}. O
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Letn € S be such that Gis not connected and IK", . .. ,Rﬂn be its diferent
R-classes. Set(n) = maxr’,..., rl’(‘n}, wherer{' = min{|Z : ze R{'}. Define

u(S) = max{u(n) | ne S and G, not connected

Theorem 4. Let S be afinitely generated commutative cancellative reduced monoid.
Then

c(S) = u(S).

Proof. Constructp in the following way. For everyn € S such that G is not
connected, chooséﬁ(...,z{iﬂ) € RYx-- -XREH suchthatz| = r*fori € {1,...,kn}.
Takepn = {(Z),2),(2.2), ..., (z’l‘,z;jn)}. If G, is connected, then sgt = 0. Then,
as pointed out abovey, = Jnespn IS @ minimal presentation fdB. In view of
Proposition 2, we deduce thatS)(< u(S).

Letn € S be such that(S) = u(n), and assume without loss of generality that
u(n) = |Z). If c(S) < u(S), then cf) < ||, or in other words, factorizations of
can be joined by-chains for some < |Z)|. Letz = Z) andZ = Z). Sincez and
Z are diferent factorizations af, there must be a cham, . . ., z of factorizations
of nwith z; = z, zx = Z and d, z+1) < ¢. AszandZ are in diferentR-classes,
there exists € {1,...,k} such thaiz = z,...,z € R} andz,; ¢ R]. From the
definition of R-class, this in particular implies that sugp( suppé&.1) is empty.
Hence dg,z.1) = max|z|,|z.1l}. Asz € R} and|Z)| = r] = min{|Z : z € R]},
we get thatZl| < |z|. But then we obtainz]| < max|zl,|z.1l} = d(z.z.1) < ¢,
contradicting that < |Z]). O

Algorithms exist for computing minimal presentations, and also for computing
all the expressions of an element in a finitely generated commutative cancellative
reduced monoid. Thus, we caffectively computeu(S) and in turn &ectively
compute c§).

Exampleb. We begin with a calculation involving a numerical monoid. Set
Ng,...,npwitht>2,n3,...,nieN,1<n <---<ncandgcdfy,...,n) = 1. If
g(S) represents the Frobenius numbepthen from [9, Example 3.1.6] we have

a(s) +ny +
Ny

c(S) <t(S) < 1

andc(S) = t(S) = n, whent = 2. We consider the case= 3 and letS = (3,5, 7).
The element® € S such that G is not connected are 10, 12 and 14. And the
different factorizations for each of these elements are

10: (02,0)and (10,1),

12: (01,1) and (40,0),

14: (0 0,2) and (31,0).
A minimal presentation fo§ is

{((0,2,0),(1.0.1)).((0,1.1).(4.0,0)).((0,0.2), (3, 1,0))}.

Any two different factorizations are in fieérentR-classes. Then the catenary de-
gree is the maximum of the lengths of these factorizations. Hen&}, €(4.
Observe that the bound given in Corollary 3 is far from sharp. O
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We can rewrite this last theorem with respect to the irreducible elements of the
associated linear Diophantine equationz HndZ are diferent factorizations of
the same elememt € S, then as mentioned above, f) = Zrzl(ai, b;) for some
(&, b)) € 7(~m). We can construct the following chain of factorizations

Z2=Zozn=2Z-a)+bioczn=2-(a1+a)+(br+b)o---
ok=@- (gt ta) b+ b =27,

The distance betweemandz,1is d@z,z.1) =d@,1+(@— (@1 + -+ & + a41) +
(b1+---+by)), by +(@-(ar+---+a +air1) + (b1 +- - - +1))) = d(@i+1, bi+1). Since
(a+1, bi+1) is an irreducible solution of (1), then either sugp{) N suppbi.1) is
empty org; = bj = ej for somej. This implies that either df, z.,1) = max|aj. 1/, b+ 1/}
or dz, z+1) = 0. In this way, one easily deduces the following result, similar to
Proposition 2. Observe that if(b) belongs taZ (~u), then so doedx a).

Proposition 6. Let|Z(~n)| = maX|al | (a, b) € 7(~v) for some be NP}. Then
c(S) < I Z(~m)l.

Example?. Let us return to the above example wih= (3,5, 7). If we compute
the set of minimal solutions of the equation

3X1 + BXo + TX3 — 3y1 -5y, —7y3 = 0,
one obtains the following

{((0,0,1).(0,0,1)).((0,0,2).(3,1,0)).((0,0,3).(2,3,0)). ((0,0,3), (7,0, 0)),
((0,0,4),(1,5,0)).((0,0,5),(0,7,0)).((0,1,0), (0, 1,0)). (0, 1, 1), (4,0, 0)),
((0,2,0),(1,0,1)).((0,3,0),(5,0,0)),((0,7,0),(0,0,5)),((1,0,0),(1,0,0)),
((1,0,1).(0,2,0)).((1,5,0),(0,0,4)).((2,3,0),(0,0,3)).((3,1,0), (0,0, 2)),

((4,0,0),(0,1,1)).((5,0.0),(0,3,0)).((7,0,0), (0.0, 3))}

If we proceed analogously as we did for minimal presentations, we could determine
which elementsin S have multiple factorizations in the above set. By inspection
the elements 3, 5, 7, 10, 12, 14, 15, 21, 28 and 35 are those “involved” in the
set7(~y). Note for instance that the factorizations of 35 arg0(8), (0,7,0),
(1,5,1),(23,2),(31,3),(54,0),(62,1), (7,0,2) and (101, 0) (but only (Q0, 5)
and (Q7,0) appear as part of an irreducible). Notice that the factorization of 35
with minimum length is (00, 5), and|(0,0,5)| = 5 > 4 = ¢(S). A 4-chain joining
(0,0,5) and (Q7,0) is for instance (M0, 5)0(3, 1, 3)o (1,5, 1)o7(0, 7, 0).

So we cannot proceed as with minimal presentations. The mferehce is
that there is only on®-class in the set of factorizations of 35, and when dealing
with minimal presentations, every element in the semigroup involved in one of its
minimal presentations has a set of factorizations with at leasfwlasses. O

One canS-grade the elements df(~y) in the following way. Fors € S,
define I's(~m) = {(@b) € I(~m) | ¢(@) = s. ThenZ(~m) = Uses Zs(~m).
For everys € S such thatZs(~v) # 0, letR3, .. .,Rﬁs be its diferentR-classes
of the set of factorizations of. From eachR-class, choose an elemeaq‘{ such
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that [a is minimum in itsR-class. Then among these, takesuch thafag| =
max(ajl,..., |a§sl}. Define

v(S) = maX|ag| | s€ S, Ts(~m) # 0, ks > 1}.

Theorem 8. Let S be afinitely generated commutative cancellative reduced monoid.
Then

c(S) = »(S).

Proof. In view of Theorem 4, it sfices to show tha#(S) = u(S). If we show
that the elements € S used to compute boti(S) andu(S) are the same, then
we are done. That is to say, we must prove fisat S | Gs not connectefd= {s e
S| Zs(~m) # 0,ks > 1}. Notice that ifs € S andks > 1 (ks as above stands for
the number ofR-classes of factorizations @, then G is not connected. Hence
{se S| ITs(~m) # 0,ks > 1} C {se S| Gsnhot connected Now takes € S such
that Gs is not connected. Theg > 1 and one can find two fierent factorizations
of s, saya andb, such that4, b) belongs to some minimal presentationSofThen
(& b) € 7(~m) (see Remark 1) and consequentlyf~y) is not empty. This proves
the other inclusion. O

4. THE TAME DEGREE AND ADDITIONAL EXAMPLES

Let S be a finitely generated commutative cancellative reduced monoid mini-
mally generated byn,, ..., np} and lety be its factorization homomorphism. Let
M be the subgroup d¢tP defined byAx = 0, whereA is the matrix whose columns
are the generators & We already know that the kernel congruenceo$ ~ ;.
Define, as abovel s(~n) as the set of irreducibles,(b) of ~y such thatp(a) = s
(= ¢(b)). Fori e {1,..., p}, set

Fi={ae ¢ (9 |ie supp@)}.
GivenY C NP andx € NP, define
d(x, Y) = min{d(x,y) |y € Y}.
Lemma 9. With the notation introduced above, for every {1, ..., p},

t(S, ni) = maxd(a, Ffp(a)) lae NP, (@) —ni € S, Ty@)(~m) # 0.

Proof. Lett = t(S,n;) andd = maxd(a, Fiw(a)) | p(@) — N €S, Ty@(~m) # 0} We
first prove that < d. Assume thas € Sis such thas—n; € S. We have to show that
there existe € FL such that d{ Z) < d. Letz e ¢~%(9). If i € suppg), then take
z=Z. Inthis setting df, Z) = 0 < d. Now assume that¢ suppg). Ass—n; € S,
we can take& € ¢ 1(s—n). Thenz+ g € ¢ () andi € suppg + ). Hence
(zZ2+¢g) e~m. Thus, there existg, b1), ..., (&, b) € 7 (~m) such that, z+g) =
(a1,b1) + - - + (&, by). This implies that there exista,(b) € {(a1, b1),..., (&, b)}
such that §,b) < (zz+ &) andi € suppp) (observe that < z implies that
I ¢ supp@)). Then @, b) € I y@(~m), ¢(@) —ni € Sandb e F;(a). Takeb’ € F:D(a)
such that &4, b") = d(a, F:D(a)). If we choosezZ = b/ + z— @, theni € suppf),
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Z e p}(s)and d¢ Z) = d(@@+ (z—a),b’ + (z— a)) = d(a, b’) < d. This proves that
t<d.

For the other inequality, assume to the contrary thatd. Leta € NP with
(@) —n; € S be such thatl = d(a, F:D(a)), and letb € F:O(a) be such thatl = d(a, b).
Then ag is the catenary degree &f there must be an elemebit e ¢~(s) with
i € suppp’) and dg@, b") < t. But this is impossible, sincg = d(a, b) = d(a, FY) <
d(ab) <t. mi

The following result now follows easily.

Proposition 10. Let S be a finitely generated commutative cancellative reduced
monoid minimally generated lyy, ..., np}. Then

t(S) = ma)qd(ae F:p(a)) | ac Npa So(a) - ni € Sa Itp(a)(~|\/|) :’t 05 {19 ey p}}

We close with a series of examples which demonstrate the versatility of our
methods.

Examplell. Let us revisitS = (3,5,7). We already know from Example 7, that
the elements of for which 75(~y) is not empty are 3, 5, 7, 10, 14, 15, 21, 28 and
35. The first three are atoms, and for the rest their factorizations are

10: (0 2,0) and (10,1),

12: (0 1,1) and (40,0),

14: (00,2) and (31,0).

15: (0,3,0), (1,1,1) and (50,0),

21: (00,3),(23,0),(31,1)and (70,0),

28: (00,4),(15,0),(231),(31,2),(620)and (70,1),

35: (00,5), (0.7,0), (1L5,1), (23,2), (31,3), (54,0), (6.2,1), (7.0,2) and

(10,1, 0).
Thus we obtain the following table. For every elemert S with 7¢(~n) # 0

(first row) we found magd(a, FY) | a € ¢~%(s)} for i € {1,2,3} (second, third and
fourth rows).

n>[10[12[14]15]21[28] 35
3124|142 |4|4]4
5124|444 |4]4
7124144 |4|2]|2

In view of Proposition 10, &) = 4. O

Examplel2. If Gis a finite abelian group, then we compute the catenary and tame
degrees for the block monoi#(G, S) (see [9, Chapter 2.5]) wheri® C G (if
S = G, then we sef3(G, G) = B(G)). From [9, Theorem 3.4.10], we have
D(G, S)(D(G,S) - 1)
2

whereD(G, S) represents the Davenport constanGokith respect to the subsst
(see [9, Chapter 5.1]). MoreovetB(Z,)) = n (see [9, Theorem 6.4.7]). L& =

o(B(G, S)) < D(G, S) andt(B(G, S)) < 1 +
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Zs andS = {1, 3}. The irreducible elements @(Zs, {1, 3}) (written as vectors) are
n =(0,5), n, =(1,3), n3 =(2,1), andng = (5,0).
The elements of (~g(z,s)) are as follows.

{((0,0,0,1),(0,0,0,1)), ((0,0,1,0),(0,0,1,0)), ((2,0,0,0),(1,0,0,0)),
((0,1,0,0),(0,1,0,0)), ((0,0,3,0),(0,1,0,1)), ((0,1,0,1),(0,0,3,0)),
((0,0,5,0),(1,0,0,2)), ((1,0,0,2),(0,0,5,0)), ((0,1,2,0),(1,0,0,1)),
((1,0,0,1),(0,1,2,0)), ((0,2,0,0),(1,0,1,0)), ((1,0,1,0),(0,2,0,0)),
((0,3,1,0),(2,0,0,1)), ((2,0,0,1),(0,3,1,0)), ((0,5,0,0),(3,0,0,1)),
((3,0,0,1),(0,5,0,0))}
The factorizations of the elements involved in these irreducibles are
(6,3): (00,3,0)and (01,0, 1) representing tw&-classes.
(5,5): (01,2,0)and (10,0,1) representing tw-classes.
(2,6): (1,0,1,0) and (Q2,0,0) representing tw®-classes.
(10,5): (Q0,5,0) and (10,0,2),(0, 1,2, 1) representing ongB-class.
(5,10); (03,1,0),(20,0,1) and (11, 2,0) representing ong-class.
(5,15): (05,0,0),(30,0,1), (1,3,1,0) and (21, 2,0) representing ong-class.
Thus, ¢c(B(Zs, {1, 3})) = 3 < ¢(B(Zs) = 5. For the tame degree we obtain the
following table.

n?1(6,3)](55)](2,6)] (10,5)] (5,10)] (5,15)
ny - 3 2 3 2 2
ny 3 3 2 3 3 3
n3 3 3 2 3 3 3
Ny 3 3 - 3 3 5
Hencet(8(Zs, {1, 3})) = 5. O

Examplel3. By [9, Theorem 1.6.3], iS is an atomic monoid andS) = 2, then

S is half-factorial (i.e., all irreducible factorizations of a nonunit elemehtve

the same length). The converse of this statement is false, and as a counterexample
the authors of [9] fier a half-factorial Dedekind domaid with ¢(D) = c. For

each odd integen > 3, we construct a half-factorial monot with c(S) = n.

Letn = 2k + 1 for somek > 1. TakeS = ((2,2 + 2n),(2,n),(2,0)). ThenS is
isomorphic taN3/ ~ M, with M given by the equations

2x+2y+2z=0
(2+n)x+ny=0.

A basis (as as subgroup @f) for M is B = {(n,—n — 2, 2)} (here it is necessary
that n is odd for otherwise both equations can be simplified&iwlisomorphic

to (1, 1+ n),(1,n/2),(1,0))). Hence, by [3] the saturation & is itself (since it
has cardinality one) and thus the gdt-\;) is composed of the elements, @),

i €{1,2,3}, and (0,0,2),(0,n+ 2, 0)) (and its symmetry). By the main result of
[2], S is half-factorial. The only element (apart from the generators) involved in
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the irreducibles iss = n(2,2 + n) + 2(2,0) = (n + 2)(2 n), which has only two
different expressions (this follows since we have only two non-trivial irreducibles,
say (0, 0, 2), (0, n+2,0)) and its symmetry{((n, 0, 2), (0, n+ 2, 0))} and these form

a minimal presentation f@; thus the associated graf has only two connected
components, whencghas only twoR-classes). Thu€(S) = n + 2. O

Exampleld. We return to numerical monoids and show that the catenary degree
may be strictly less than the tame degree in the case v@herguires three gener-
ators. Set = (10,13 15). The defining equation f& is M = 10x+ 13y + 152+ 0

and the irreducibles apart from (g), i € {1, 2,3} in I(~n), are

{((0,10,0).(130,0)). ((0.5,1).(8,0,0)),  ((0,5,0),(5,0,1)),
((0.0,2),(3,0,0),  ((0.50).(20,3), ((0.05).(15,0)),
((0,10,0),(1,0,8)),  ((0,0,13),(0,150)), ((0,15,0),(0,0,13)),
((1.0,8).(0,10,0)),  ((1,5.0).(0,0,5)),  ((2.0,3).(0,5,0)),
((3.0,0).(0,0,2)),  ((50,1).(0,50), ((800).(0,51)),
((13,0,0), (0, 10, 0));.

The elements involved in these irreducibles are 30, 65, 75, 80, 130, 195. The
only elements with more than twg-classes are 30 and 65, and theiffetient
factorizations are

30: (30,0), (0,0,2)

65: (05,0), (20,3).
Thus the catenary degree is 5. Factorizations for the rest of elements involved in
the irreducibles are:

75: (00,5), (1,5,0), (30,3), (60,1),
80: (05,1),(20,4),(50,2), (80,0),
130: (010,0), (10,8),(25,3),(40,6), (55,1), (7.0,4), (100,2), (130,0),
195: (00,13),(0150),(15,8),(210,3),(30,11), (45,6),(510,1),(60,9),
(7,5,4), (90,7),(105,2), (120,5), (135,0), (150, 3), (18 0,1).
Then
e t(S,np) = 6 (reached ird((0, 0, 5), {(1, 5, 0)})),
e t(S,np) = 8 (reached id((8, 0, 0), {(0, 5, 1)})),
e (S,ny) = 6 (reached im((0, 10,0),{(1,0,8),(2,5,3),(5,5,1),(7,0,4), (10,0, 2)})).
Thust(S) = 8 and this is an example whet€S) < t(S). |

REFERENCES

[1] C. Bowles, S. T. Chapman, N. Kaplan and D. Reiser, On Delta Sets of Numerical Monoids, to
appear inJ. Algebra Appl

[2] S. T. Chapman, J.l. Gaile-Garéa, P.A. Gara-Snchez and J.C. Rosales, Computing the elas-
ticity of a Krull monoid,Linear Algebra Appl3362001), 201-210.

[3] S. T. Chapman, P. A. Gdia-Snchez, D. Llena and J. C. Rosales, Presentations of finitely
generated cancellative commutative monoids and nonnegative solutions of systems of linear
equations, submitted for publication.

[4] S. T. Chapman, U. Krause and E. Oeljeklaus, On Diophantine monoids and their class groups,
Pacific J. Math207(2002), 125-147.



THE CATENARY AND TAME DEGREE 11

[5] A. Geroldinger, On the structure and arithmetic of finitely primary monofesechoslovak
Math. J.121(1996), 677—695.
[6] A. Geroldinger, The catenary degree and tameness of factorizations in weakly Krull domains,
Factorization in Integral Domainkgect. Notes Pure Appl. Mati80(1997), 113-153.
[7] A. Geroldinger, Chains of factorizations and sets of lengih8lgebral8§1997), 331-363.
[8] A. Geroldinger, Chains of factorizations in orders of global fiel@sjloq. Math.72(1997),
83-102.
[9] A. Geroldinger and F. Halter-KociNon-unique Factorizations: Algebraic, Combinatorial and
Analytic TheoryPure and Applied Mathematics, vol. 278, Chapman & /&iC, 2006.
[10] J.-L. Lambert, Une borne pour leggerateurs des solutions egrtes positives d * unéquation
diophantienne ligaire, C. R. Acad. Sci. Pari€6 | Math. 305 (1987), no. 2, 39-40.
[11] W. Hassler, Factorization in finitely generated domain®ure Appl. Algebrd 862004), 151—
168.
[12] L. Rédei, “The theory of finitely generated commutative semigroups.” Pergamon, Oxford-
Edinburgh-New York, 1965.
[13] J. C. Rosales, Function minimum associated to a congruence on imegge space, Semi-
group Forunbl (1995), no. 1, 87-95.
[14] J. C. Rosales, P. A. GdezSnchez and J. M. Urbano-Blanco, On presentations of commutative
monoids, Internat. J. Algebra Comp@t(1999), no. 5, 539-553.
[15] J. C. Rosales and P. A. GameSanchez, “Finitely generated commutative monoids,” Nova Sci-
ence Publishers, New York, 1999.
[16] W. A. Schmid, On invariants related to non-unique factorizations in block monoids and rings
of algebraic integersvlath. Slovac&5(2005), 21-37.
[17] The GAP Group. GAP — Groups, Algorithms, and Programming, Version, 42004.
(http://www.gap-system.org).

TriniTy UNIVERSITY, DEPARTMENT OF M ATHEMATICS, ONE TRINITY PLACE, SAN ANTONIO, TEXAS 78212-
7200
E-mail addressschapman@trinity.edu

DEPARTAMENTO DE ALGEBRA, UNIVERSIDAD DE GRANADA, E-18071 GaNADA, EspaNa
E-mail addresspedro@ugr. es

DEPARTAMENTO DE GEOMETRIA, ToPoLOGIA Y Quimica ORGANICA, UNIVERSIDAD DE ALMERIA, 04120
ALMERIA, EspaNa
E-mail addressdllena@ual.es

TriNiTY UNIVERSITY, DEPARTMENT OF M ATHEMATICS, ONE TRINITY PLACE, SAN ANTONIO, TEXAS 78212-
7200
E-mail addressvadim123@gmail . com

DEPARTAMENTO DE ALGEBRA, UNIVERSIDAD DE GRANADA, E-18071 GaNADA, EspaNa
E-mail addressjrosales@ugr.es



