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A. Problems involving chains of irreducible factorizations in atomic in-
tegral domains and monoids have been the focus of much recent literature. IfS
is a commutative cancellative atomic monoid, then the catenary degree ofS (de-
notedc(S)) and the tame degree ofS (denotedt(S)) are combinatorial invariants
of S which describe the behavior of chains of factorizations. In this note, we
describe methods to compute bothc(S) andt(S) whenM is a finitely generated
commutative cancellative monoid.

1. I

The study of combinatorial properties of non-unique factorizations in integral
domains and monoids has become an active area of interest (see [9] and its refer-
ences). Early work in this area focused on study of theelasticity of factorization
which describes non-unique factorizations in a “coarse” sense (see for instance [2]
where the first, second and fifth authors of the current paper construct an algorithm
to compute the elasticity of a Krull monoid with finite divisor class group). Re-
cently, the study of more precise invariants associated to non-unique factorizations
has become popular (see for instance the papers [6], [7], [8], [5] and [11]). The two
principal such invariants are known as thecatenary degreeand thetame degree. A
summary of the up to date status of research concerning these constants can be
found in [9, Chapters 6.4 and 6.5], but needless to say, exact computations of these
constants (especially in the case of the tame degree) are not abundant. In Section
3 of this paper, we will describe two methods to compute the catenary degree of a
finitely generated commutative cancellative monoidS. These methods are based
on the computation of a minimal presentation ofS, and we review these computa-
tions in Section 2. The material on presentations draws heavily on results from [3]
and [14]. Our computations with the catenary degree will lead to a similar method
in Section 4 to compute the tame degree ofS. We close Section 4 with several ex-
amples illustrating the functionality of our results. All programming involving our
algorithms was implemented inGAP [17]. While consideration of the finitely gen-
erated case my seem to be a strong restriction, many classes of monoids, such as
numerical monoids (see [1]), block monoids over finite abelian groups (see [16]),
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and Diophantine monoids (see [4]) can be studied under this assumption. Since
block monoids fall on this list, our methods are applicable to any Krull monoid
whose divisor class group contains finitely many prime divisors (see [9, Theorem
2.5.8]).

We open with some notation and definitions.S will always denote a commu-
tative cancellative monoid with set of unitsS×. Since units are not relevant to the
study of the factorization properties ofS, by passing (if necessary) to the quotient
monoidS/S×, we can always assume thatS is reduced(i.e., | S× |= 1). We assume
throughout that{n1, . . . ,np} is the minimal system of generators ofS. The map

ϕ : Np→ S, ϕ(a1, . . . ,ap) = a1n1 + · · · + apnp

is a monoid homomorphism, known as thefactorization homomorphismof S. Let
σ be its kernel congruence, that is,aσb if and only if ϕ(a) = ϕ(b). ThenS is
isomorphic toNp/σ and forn ∈ S, the setϕ−1(n) is the set offactorizationsof n.
Under our hypothesis, this set is always finite (see [14]).

If (a1, . . . ,ap) ∈ ϕ−1(n), then of coursen = a1n1 + · · · + apnp and thelengthof
the factorizationa = (a1, . . . ,ap) is |a| = a1 + · · · + ap. For z = (z1, . . . , zp), z′ =
(z′1, . . . , z

′
p) ∈ Np write

gcd(z, z′) = (min{z1, z
′
1}, . . . ,min{zp, z

′
p})

and
z
z′
= z− z′.

Define

d(z, z′) = max

{∣∣∣∣∣∣ z
gcd(z, z′)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣ z′

gcd(z, z′)

∣∣∣∣∣∣
}
,

to be thedistancebetweenz andz′. The basic properties of the distance function
can be found in [9, Proposition 1.2.5]. Thesupportof z ∈ Np is defined as usual by

supp(z) = {i ∈ {1, . . . , p} | zi , 0}.

Givenn ∈ S andz, z′ ∈ ϕ−1(n), then anN-chain of factorizationsfrom z to z′ is
a sequencez0, . . . , zk ∈ ϕ

−1(s) such thatz0 = z, zk = z′ and d(zi , zi+1) ≤ N for all i.
Thecatenary degreeof n, c(n), is the minimalN ∈ N ∪ {∞} such that for any two
factorizationsz, z′ ∈ ϕ−1(n), there is anN-chain fromz to z′. The catenary degree
of S, denoted by c(S), is defined by

c(S) = sup{c(n) | n ∈ S}.

Thetame degreetS(S′,X) of S′ ⊆ S andX ⊆ Np is the minimum of allN ∈ N∪{∞}
such that for alls ∈ S′, z ∈ ϕ−1(s) and x ∈ X such thats − ϕ(x) ∈ S, there
existsz′ ∈ ϕ−1(s) such thatx ≤ z′ and d(z, z′) ≤ N. For ease of notation, we
write tS(S′, x) instead of tS(S′, {x}), and t(S,X) instead of tS(S,X). The monoid
S is said to belocally tameif t(S,ni) is finite for all i ∈ {1, . . . , p}, and tameif
t(S) = t(S, {n1, . . . ,np}) < ∞. Clearly, asS is finitely generated, both concepts are
equivalent. This is not the case in general for non-finitely generated monoids (see
[9, Theorem 1.6.7].
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2. P    

By Redei’s theorem (see [12]), every finitely generated commutative monoid is
finitely presented. That is, there existsρ = {(a1,b1), . . . , (at,bt)} ⊂ Np × Np such
that the kernel congruence ofϕ is the least congruence containingρ. In [14] an
algorithm for finding a minimal presentation forS is given, that is, a set generating
ρ such that none of its proper subsets generatesσ. We review briefly this procedure.

For everyn ∈ S, defineGn to be the graph with vertices

Vn = {ni | n− ni ∈ S}

and whose edges are
En = {nin j | n− (ni + n j) ∈ S}.

Given s ∈ S anda,b ∈ ϕ−1(s), we writeaRb if there exists a chaina1, . . . ,ak ∈

ϕ−1(s) such that

• a1 = a, ak = b,
• for all i ∈ {1, . . . , k− 1}, supp(ai) ∩ supp(ai+1) , ∅.

It can be shown that the number of connected components ofGn coincides with
the number ofR-classes ofϕ−1(n). For everyn ∈ S, defineρn in the following way.

• If Gn is connected, then setρn = ∅.
• If Gn is not connected andR1, . . . ,Rk are the differentR-classes ofϕ−1(n),

then choosezi ∈ Ri for all i ∈ {1, . . . , k} and setρn = {(z1, z2), . . . , (z1, zk)}.

Thenρ =
⋃

n∈S ρn is a minimal presentation ofS (moreover, in this way you can
construct all minimal presentations forS). There are finitely many elementsn in S
for whichGn is not connected.

There is another approach for the construction of a minimal presentation forS,
which is related to the set of nonnegative solutions of a system of linear Diophan-
tine equations. Under the standing hypothesis,S can be embedded inZk × Zd1 ×

· · · × Zdr for some positive integersk,d1, . . . ,dr with d1|d2| · · · |dr (see for instance
[15]). Son1, . . . ,np can be viewed as elements inZk × Zd1 × · · · × Zdr . Let M be
the subgroup ofZp whose defining equations are

n1x1 + · · · + npxp = 0

(where this is understood to bek + r equations and zero is the zero ofZk × Zd1 ×

· · · × Zdr ). It follows that (see for instance [15])σ = Ker(ϕ) =∼M, where

∼M= {(a,b) ∈ Np × Np | a− b ∈ M}.

The set of irreducibles of∼M,I(∼M), is the set of nontrivial minimal elements with
respect to the usual partial order≤ onNp × Np. From [15, Chapter 8], it can be
shown that ((x1, . . . , xp), (y1, . . . , yp)) ∈ I(∼M) if and only if (x1, . . . , xp, y1, . . . , yp)
is a minimal nontrivial nonnegative solution to the system of equations

n1x1 + · · · + npxp − n1y1 − · · · − npyp = 0.(1)

The kernel congruence ofϕ is generated byI(∼M) as a monoid, and thus as a
congruence. This means that ifϕ(z) = ϕ(z′), then (z, z′) =

∑k
i=1(ai ,bi) with (ai ,bi) ∈

I(∼M) for all i.



4 S. T. CHAPMAN, P.A. GARĆIA-SÁNCHEZ, D. LLENA, V. PONOMARENKO, AND J.C. ROSALES

Remark1. Usually if ρ is a minimal presentation, then the setI(∼M) is larger
and contains much more information. The reader can check this in the examples
given in the next sections. However, it is easy to prove thatI(∼M) contains all
possible minimal presentations ofS. In order to see this, define the following
relation onS: for a,b ∈ S, a ≤S b if a + c = b for somec ∈ S. We usea <S b
to denotea ≤S b anda , b. The reader can check that≤S is reflexive, transitive
and antisymmetric sinceS is a cancellative and reduced monoid. Let (a,b) be an
element in a minimal presentationρ of S. Assume that (a,b) < I(∼M). As the set of
irreducibles generatesσ as a monoid, this in particular means that, there must be an
element (a′,b′) ∈ I(∼M) such that (a′,b′) < (a,b). Thusϕ(a′) = ϕ(b′) <S ϕ(a) =
ϕ(b). As ρ generatesσ as a congruence, there exists a sequenceu1, . . . ,ut ∈ N

p

such thata′ = u1σu2σ · · ·σut−1σut = b′ and (ui ,ui+1) = (ai + vi ,bi + vi) with
(ai ,bi) ∈ ρ ∪ ρ−1 for all i ∈ {1, . . . , t − 1} whereρ−1 = {(b,a) | (a,b) ∈ ρ}. But then
ϕ(a′) = ϕ(ai) + ϕ(ui) = ϕ(bi) + ϕ(ui). Henceϕ(ai) <S ϕ(a′) <S ϕ(s), which leads
to (ai ,bi) , (a,b) for any i. This would imply that (a,b) can be obtained from the
rest of elements inρ, contradicting the minimality ofρ.

3. T        

Recall (as illustrated above) that ifρ is a minimal presentation forS (that is,
a minimal system of generators ofσ as a congruence), then wheneverzσz′, there
existsz0, . . . , zk ∈ N

p in such a way that

z= z0σz1σ · · ·σzk−1σzk = z′

and (zi , zi+1) = (ai + ui ,bi + ui) for someui ∈ N
p and (ai ,bi) ∈ ρ ∪ ρ−1. Notice that

if (a,b) ∈ ρ ∪ ρ−1, then the set supp(a) ∩ supp(b) is empty, and thus gcd(a,b) = 0.
This in particular implies that d(a,b) = max{|a|, |b|}. Observe also that d(a+ u,b+
u) = d(a,b). Thus in the above chainz0, . . . , zp the distance between two adjacent
elements is bounded by max{|a| | (a,b) ∈ ρ ∪ ρ−1 for someb ∈ Np}.

From the above remark, we obtain the following.

Proposition 2. Let |ρ| = max{|a| | (a,b) ∈ ρ ∪ ρ−1 for some b∈ Np}. Then

c(S) ≤ |ρ|.

By using this together with Lambert’s bound [10] for a single linear homoge-
neous Diophantine equation, we obtain this consequence for numerical monoids.

Corollary 3. Assume that n1, . . . ,np are positive integers. Then

c(〈n1, . . . ,np〉) ≤ max{n1, . . . ,np}.

Proof. Let S = 〈n1, . . . ,np〉 and letρ be a minimal presentation ofS. As we
have seen above, if (a,b) ∈ ρ, then (a,b) ∈ I(∼M), or in other words, if (a,b) =
((a1, . . . ,ap), (b1, . . . ,bp)), then (a1, . . . ,ap,b1, . . . ,bp) is a minimal solution to the
equation

n1x1 + · · · + npxp − n1x1 − · · · − npxp = 0.

By Lambert’s bound (see [10]), we have thata1 + . . . + ap ≤ max{n1, . . . ,np} and
b1 + . . . + bp ≤ max{n1, . . . ,np}. Thus|ρ| ≤ max{n1, . . . ,np}. �
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Let n ∈ S be such that Gn is not connected and letRn
1, . . . ,R

n
kn

be its different
R-classes. Setµ(n) = max{rn

1, . . . , r
n
kn
}, wherern

i = min{|z| : z ∈ Rn
i }. Define

µ(S) = max{µ(n) | n ∈ S and Gn not connected}.

Theorem 4. Let S be a finitely generated commutative cancellative reduced monoid.
Then

c(S) = µ(S).

Proof. Constructρ in the following way. For everyn ∈ S such that Gn is not
connected, choose (zn

1, . . . , z
n
kn

) ∈ Rn
1×· · ·×R

n
kn

such that|zn
i | = rn

i for i ∈ {1, . . . , kn}.
Takeρn = {(zn

1, z
n
2), (zn

1, z
n
3), . . . , (zn

1, z
n
kn

)}. If Gn is connected, then setρn = ∅. Then,
as pointed out above,ρ =

⋃
n∈S ρn is a minimal presentation forS. In view of

Proposition 2, we deduce that c(S) ≤ µ(S).
Let n ∈ S be such thatµ(S) = µ(n), and assume without loss of generality that

µ(n) = |zn
1|. If c(S) < µ(S), then c(n) < |zn

1|, or in other words, factorizations ofn
can be joined byc-chains for somec < |zn

1|. Let z = zn
1 andz′ = zn

2. Sincez and
z′ are different factorizations ofn, there must be a chainz1, . . . , zk of factorizations
of n with z1 = z, zk = z′ and d(zi , zi+1) ≤ c. As z andz′ are in differentR-classes,
there existsi ∈ {1, . . . , k} such thatz = z1, . . . , zi ∈ R

n
1 andzi+1 < R

n
1. From the

definition ofR-class, this in particular implies that supp(zi) ∩ supp(zi+1) is empty.
Hence d(zi , zi+1) = max{|zi |, |zi+1|}. As zi ∈ R

n
1 and |zn

1| = rn
1 = min{|z| : z ∈ Rn

1},
we get that|zn

1| ≤ |zi |. But then we obtain|zn
1| ≤ max{|zi |, |zi+1|} = d(zi , zi+1) ≤ c,

contradicting thatc < |zn
1|. �

Algorithms exist for computing minimal presentations, and also for computing
all the expressions of an element in a finitely generated commutative cancellative
reduced monoid. Thus, we can effectively computeµ(S) and in turn effectively
compute c(S).

Example5. We begin with a calculation involving a numerical monoid. LetS =
〈n1, . . . ,nt〉 with t ≥ 2, n1, . . . ,nt ∈ N, 1 < n1 < · · · < nt and gcd (n1, . . . ,nt) = 1. If
g(S) represents the Frobenius number ofS, then from [9, Example 3.1.6] we have

c(S) ≤ t(S) ≤
g(S) + nt

n1
+ 1

andc(S) = t(S) = n2 whent = 2. We consider the caset = 3 and letS = 〈3,5,7〉.
The elementsn ∈ S such that Gn is not connected are 10, 12 and 14. And the
different factorizations for each of these elements are

10: (0,2,0) and (1,0,1),
12: (0,1,1) and (4,0,0),
14: (0,0,2) and (3,1,0).

A minimal presentation forS is

{((0,2,0), (1,0,1)), ((0,1,1), (4,0,0)), ((0,0,2), (3,1,0))}.

Any two different factorizations are in differentR-classes. Then the catenary de-
gree is the maximum of the lengths of these factorizations. Hence, c(S) = 4.
Observe that the bound given in Corollary 3 is far from sharp. �
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We can rewrite this last theorem with respect to the irreducible elements of the
associated linear Diophantine equation. Ifz andz′ are different factorizations of
the same elementn ∈ S, then as mentioned above, (z, z′) =

∑k
i=1(ai ,bi) for some

(ai ,bi) ∈ I(∼M). We can construct the following chain of factorizations

z= z0 σ z1 = (z− a1) + b1 σ z2 = (z− (a1 + a2)) + (b1 + b2) σ · · ·

· · ·σ zk = (a− (a1 + · · · + ak)) + (b1 + · · · + bk) = z′.

The distance betweenzi andzi+1 is d(zi , zi+1) = d(ai+1+ (a− (a1+ · · ·+ ai + ai+1)+
(b1+ · · ·+bi)),bi+1+ (a− (a1+ · · ·+ai +ai+1)+ (b1+ · · ·+bi))) = d(ai+1,bi+1). Since
(ai+1,bi+1) is an irreducible solution of (1), then either supp(ai+1) ∩ supp(bi+1) is
empty orai = bi = ej for somej. This implies that either d(zi , zi+1) = max{|ai+1|, |bi+1|}

or d(zi , zi+1) = 0. In this way, one easily deduces the following result, similar to
Proposition 2. Observe that if (a,b) belongs toI(∼M), then so does (b,a).

Proposition 6. Let |I(∼M)| = max{|a| | (a,b) ∈ I(∼M) for some b∈ Np}. Then

c(S) ≤ |I(∼M)|.

Example7. Let us return to the above example withS = 〈3,5,7〉. If we compute
the set of minimal solutions of the equation

3x1 + 5x2 + 7x3 − 3y1 − 5y2 − 7y3 = 0,

one obtains the following

{((0,0,1), (0,0,1)), ((0,0,2), (3,1,0)), ((0,0,3), (2,3,0)), ((0,0,3), (7,0,0)),

((0,0,4), (1,5,0)), ((0,0,5), (0,7,0)), ((0,1,0), (0,1,0)), ((0,1,1), (4,0,0)),

((0,2,0), (1,0,1)), ((0,3,0), (5,0,0)), ((0,7,0), (0,0,5)), ((1,0,0), (1,0,0)),

((1,0,1), (0,2,0)), ((1,5,0), (0,0,4)), ((2,3,0), (0,0,3)), ((3,1,0), (0,0,2)),

((4,0,0), (0,1,1)), ((5,0,0), (0,3,0)), ((7,0,0), (0,0,3))}

If we proceed analogously as we did for minimal presentations, we could determine
which elementss in S have multiple factorizations in the above set. By inspection
the elements 3, 5, 7, 10, 12, 14, 15, 21, 28 and 35 are those “involved” in the
setI(∼M). Note for instance that the factorizations of 35 are (0,0,5), (0,7,0),
(1,5,1), (2,3,2), (3,1,3), (5,4,0), (6,2,1), (7,0,2) and (10,1,0) (but only (0,0,5)
and (0,7,0) appear as part of an irreducible). Notice that the factorization of 35
with minimum length is (0,0,5), and|(0,0,5)| = 5 > 4 = c(S). A 4-chain joining
(0,0,5) and (0,7,0) is for instance (0,0,5)σ(3,1,3)σ(1,5,1)σ(0,7,0).

So we cannot proceed as with minimal presentations. The main difference is
that there is only oneR-class in the set of factorizations of 35, and when dealing
with minimal presentations, every element in the semigroup involved in one of its
minimal presentations has a set of factorizations with at least twoR-classes. �

One canS-grade the elements ofI(∼M) in the following way. Fors ∈ S,
defineIs(∼M) = {(a,b) ∈ I(∼M) | ϕ(a) = s}. ThenI(∼M) =

⋃
s∈S Is(∼M).

For everys ∈ S such thatIs(∼M) , ∅, let Rs
1, . . . ,R

s
ks

be its differentR-classes
of the set of factorizations ofs. From eachR-class, choose an elementas

i such



THE CATENARY AND TAME DEGREE 7

that |as
i | is minimum in itsR-class. Then among these, takeas such that|as| =

max{|as
1|, . . . , |a

s
ks
|}. Define

ν(S) = max{|as| | s ∈ S,Is(∼M) , ∅, ks > 1}.

Theorem 8. Let S be a finitely generated commutative cancellative reduced monoid.
Then

c(S) = ν(S).

Proof. In view of Theorem 4, it suffices to show thatν(S) = µ(S). If we show
that the elementss ∈ S used to compute bothν(S) andµ(S) are the same, then
we are done. That is to say, we must prove that{s ∈ S | Gs not connected} = {s ∈
S | Is(∼M) , ∅, ks > 1}. Notice that ifs ∈ S andks > 1 (ks as above stands for
the number ofR-classes of factorizations ofs), then Gs is not connected. Hence
{s ∈ S | Is(∼M) , ∅, ks > 1} ⊆ {s ∈ S | Gs not connected}. Now takes ∈ S such
that Gs is not connected. Thenks > 1 and one can find two different factorizations
of s, saya andb, such that (a,b) belongs to some minimal presentation ofS. Then
(a,b) ∈ I(∼M) (see Remark 1) and consequentlyIs(∼M) is not empty. This proves
the other inclusion. �

4. T     

Let S be a finitely generated commutative cancellative reduced monoid mini-
mally generated by{n1, . . . ,np} and letϕ be its factorization homomorphism. Let
M be the subgroup ofZp defined byAx= 0, whereA is the matrix whose columns
are the generators ofS. We already know that the kernel congruence ofϕ is ∼M.
Define, as above,Is(∼M) as the set of irreducibles (a,b) of ∼M such thatϕ(a) = s
(= ϕ(b)). For i ∈ {1, . . . , p}, set

F i
s = {a ∈ ϕ

−1(s) | i ∈ supp(a)}.

GivenY ⊆ Np andx ∈ Np, define

d(x,Y) = min{d(x, y) | y ∈ Y}.

Lemma 9. With the notation introduced above, for every i∈ {1, . . . , p},

t(S,ni) = max{d(a, F i
ϕ(a)) | a ∈ N

p, ϕ(a) − ni ∈ S,Iϕ(a)(∼M) , ∅}.

Proof. Let t = t(S,ni) andd = max{d(a, F i
ϕ(a)) | ϕ(a) − ni ∈ S,Iϕ(a)(∼M) , ∅}. We

first prove thatt ≤ d. Assume thats ∈ S is such thats−ni ∈ S. We have to show that
there existsz′ ∈ F i

s such that d(z, z′) ≤ d. Let z ∈ ϕ−1(s). If i ∈ supp(z), then take
z= z′. In this setting d(z, z′) = 0 ≤ d. Now assume thati < supp(z). As s− ni ∈ S,
we can takez ∈ ϕ−1(s− ni). Thenz+ ei ∈ ϕ

−1(s) and i ∈ supp(z+ ei). Hence
(z, z+ei) ∈∼M. Thus, there exist (a1,b1), . . . , (at,bt) ∈ I(∼M) such that (z, z+ei) =
(a1,b1) + · · · + (at,bt). This implies that there exists (a,b) ∈ {(a1,b1), . . . , (at,bt)}
such that (a,b) ≤ (z, z + ei) and i ∈ supp(b) (observe thata ≤ z implies that
i < supp(a)). Then (a,b) ∈ Iϕ(a)(∼M), ϕ(a) − ni ∈ S andb ∈ F i

ϕ(a). Takeb′ ∈ F i
ϕ(a)

such that d(a,b′) = d(a, F i
ϕ(a)). If we choosez′ = b′ + z− a, then i ∈ supp(z′),
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z′ ∈ ϕ−1(s) and d(z, z′) = d(a+ (z− a),b′ + (z− a)) = d(a,b′) ≤ d. This proves that
t ≤ d.

For the other inequality, assume to the contrary thatt < d. Let a ∈ Np with
ϕ(a)−ni ∈ S be such thatd = d(a, F i

ϕ(a)), and letb ∈ F i
ϕ(a) be such thatd = d(a,b).

Then ast is the catenary degree ofS, there must be an elementb′ ∈ ϕ−1(s) with
i ∈ supp(b′) and d(a,b′) ≤ t. But this is impossible, sinced = d(a,b) = d(a, F i

s) ≤
d(a,b′) ≤ t. �

The following result now follows easily.

Proposition 10. Let S be a finitely generated commutative cancellative reduced
monoid minimally generated by{n1, . . . ,np}. Then

t(S) = max{d(a, F i
ϕ(a)) | a ∈ N

p, ϕ(a) − ni ∈ S,Iϕ(a)(∼M) , ∅, {1, . . . , p}}.

We close with a series of examples which demonstrate the versatility of our
methods.

Example11. Let us revisitS = 〈3,5,7〉. We already know from Example 7, that
the elements ofS for whichIs(∼M) is not empty are 3, 5, 7, 10, 14, 15, 21, 28 and
35. The first three are atoms, and for the rest their factorizations are

10: (0,2,0) and (1,0,1),
12: (0,1,1) and (4,0,0),
14: (0,0,2) and (3,1,0).
15: (0,3,0), (1,1,1) and (5,0,0),
21: (0,0,3), (2,3,0), (3,1,1) and (7,0,0),
28: (0,0,4), (1,5,0), (2,3,1), (3,1,2) , (6,2,0) and (7,0,1),
35: (0,0,5), (0,7,0), (1,5,1), (2,3,2), (3,1,3), (5,4,0), (6,2,1), (7,0,2) and

(10,1,0).

Thus we obtain the following table. For every elements ∈ S with Is(∼M) , ∅
(first row) we found max{d(a, F i

s) | a ∈ ϕ
−1(s)} for i ∈ {1,2,3} (second, third and

fourth rows).

ni
S 10 12 14 15 21 28 35

3 2 4 4 2 4 4 4
5 2 4 4 4 4 4 4
7 2 4 4 4 4 2 2

In view of Proposition 10, t(S) = 4. �

Example12. If G is a finite abelian group, then we compute the catenary and tame
degrees for the block monoidB(G,S) (see [9, Chapter 2.5]) whereS ⊆ G (if
S = G, then we setB(G,G) = B(G)). From [9, Theorem 3.4.10], we have

c(B(G,S)) ≤ D(G,S) andt(B(G,S)) ≤ 1+
D(G,S)(D(G,S) − 1)

2
whereD(G,S) represents the Davenport constant ofG with respect to the subsetS
(see [9, Chapter 5.1]). Moreoverc(B(Zn)) = n (see [9, Theorem 6.4.7]). LetG =
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Z5 andS = {1,3}. The irreducible elements ofB(Z5, {1,3}) (written as vectors) are

n1 = (0,5), n2 = (1,3), n3 = (2,1), andn4 = (5,0).

The elements ofI(∼B(Z5,S)) are as follows.

{((0,0,0,1), (0,0,0,1)), ((0,0,1,0), (0,0,1,0)), ((1,0,0,0), (1,0,0,0)),

((0,1,0,0), (0,1,0,0)), ((0,0,3,0), (0,1,0,1)), ((0,1,0,1), (0,0,3,0)),

((0,0,5,0), (1,0,0,2)), ((1,0,0,2), (0,0,5,0)), ((0,1,2,0), (1,0,0,1)),

((1,0,0,1), (0,1,2,0)), ((0,2,0,0), (1,0,1,0)), ((1,0,1,0), (0,2,0,0)),

((0,3,1,0), (2,0,0,1)), ((2,0,0,1), (0,3,1,0)), ((0,5,0,0), (3,0,0,1)),

((3,0,0,1), (0,5,0,0))} .

The factorizations of the elements involved in these irreducibles are

(6,3): (0,0,3,0) and (0,1,0,1) representing twoR-classes.
(5,5): (0,1,2,0) and (1,0,0,1) representing twoR-classes.
(2,6): (1,0,1,0) and (0,2,0,0) representing twoR-classes.

(10,5): (0,0,5,0) and (1,0,0,2), (0,1,2,1) representing oneR-class.
(5,10); (0,3,1,0), (2,0,0,1) and (1,1,2,0) representing oneR-class.
(5,15): (0,5,0,0), (3,0,0,1), (1,3,1,0) and (2,1,2,0) representing oneR-class.

Thus, c(B(Z5, {1,3})) = 3 < c(B(Z5) = 5. For the tame degree we obtain the
following table.

ni
B (6,3) (5,5) (2,6) (10,5) (5,10) (5,15)

n1 - 3 2 3 2 2
n2 3 3 2 3 3 3
n3 3 3 2 3 3 3
n4 3 3 - 3 3 5

Hence,t(B(Z5, {1,3})) = 5. �

Example13. By [9, Theorem 1.6.3], ifS is an atomic monoid andc(S) = 2, then
S is half-factorial (i.e., all irreducible factorizations of a nonunit elementx have
the same length). The converse of this statement is false, and as a counterexample
the authors of [9] offer a half-factorial Dedekind domainD with c(D) = ∞. For
each odd integern ≥ 3, we construct a half-factorial monoidS with c(S) = n.
Let n = 2k + 1 for somek ≥ 1. TakeS = 〈(2,2 + 2n), (2,n), (2,0)〉. ThenS is
isomorphic toN3/ ∼ M, with M given by the equations

2x+ 2y+ 2z= 0

(2+ n)x+ ny= 0.

A basis (as as subgroup ofZ3) for M is B = {(n,−n − 2,2)} (here it is necessary
that n is odd for otherwise both equations can be simplified andS is isomorphic
to 〈(1,1 + n), (1,n/2), (1,0)〉). Hence, by [3] the saturation ofB is itself (since it
has cardinality one) and thus the setI(∼M) is composed of the elements (ei ,ei),
i ∈ {1,2,3}, and ((n,0,2), (0,n + 2,0)) (and its symmetry). By the main result of
[2], S is half-factorial. The only element (apart from the generators) involved in
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the irreducibles iss = n(2,2 + n) + 2(2,0) = (n + 2)(2,n), which has only two
different expressions (this follows since we have only two non-trivial irreducibles,
say ((n,0,2), (0,n+2,0)) and its symmetry,{((n,0,2), (0,n+2,0))} and these form
a minimal presentation forS; thus the associated graphGs has only two connected
components, whences has only twoR-classes). ThusC(S) = n+ 2. �

Example14. We return to numerical monoids and show that the catenary degree
may be strictly less than the tame degree in the case whereS requires three gener-
ators. SetS = 〈10,13,15〉. The defining equation forS is M = 10x+13y+15z+0
and the irreducibles apart from (ei ,ei), i ∈ {1,2,3} in I(∼M), are

{((0,10,0), (13,0,0)), ((0,5,1), (8,0,0)), ((0,5,0), (5,0,1)),

((0,0,2), (3,0,0)), ((0,5,0), (2,0,3)), ((0,0,5), (1,5,0)),

((0,10,0), (1,0,8)), ((0,0,13), (0,15,0)), ((0,15,0), (0,0,13)),

((1,0,8), (0,10,0)), ((1,5,0), (0,0,5)), ((2,0,3), (0,5,0)),

((3,0,0), (0,0,2)), ((5,0,1), (0,5,0)), ((8,0,0), (0,5,1)),

((13,0,0), (0,10,0))}.

The elements involved in these irreducibles are 30, 65, 75, 80, 130, 195. The
only elements with more than twoR-classes are 30 and 65, and their different
factorizations are

30: (3,0,0), (0,0,2)
65: (0,5,0), (2,0,3).

Thus the catenary degree is 5. Factorizations for the rest of elements involved in
the irreducibles are:

75: (0,0,5), (1,5,0), (3,0,3), (6,0,1),
80: (0,5,1), (2,0,4), (5,0,2), (8,0,0),

130: (0,10,0), (1,0,8), (2,5,3), (4,0,6), (5,5,1), (7,0,4), (10,0,2), (13,0,0),
195: (0,0,13), (0,15,0), (1,5,8), (2,10,3), (3,0,11), (4,5,6), (5,10,1), (6,0,9),

(7,5,4), (9,0,7), (10,5,2), (12,0,5), (13,5,0), (15,0,3), (18,0,1).

Then

• t(S,n1) = 6 (reached ind((0,0,5), {(1,5,0)})),
• t(S,n2) = 8 (reached ind((8,0,0), {(0,5,1)})),
• t(S,n2) = 6 (reached ind((0,10,0), {(1,0,8), (2,5,3), (5,5,1), (7,0,4), (10,0,2)})).

Thust(S) = 8 and this is an example wherec(S) < t(S). �
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