On Numerical Semigroups with Almost-Maximal Genus

J. Arroyo, J. Autry, C. Crandall, J. Lefler, and V. Ponomarenko*

Abstract

A numerical semigroup is a cofinite subset of \mathbb{N}_{0}, containing 0 , that is closed under addition. Its genus is the number of nonnegative integers that it does not contain. A numerical set is a similar object, not necessarily closed under addition. If T is a numerical set, then $A(T)=\left\{n \in \mathbb{N}_{0}: n+T \subseteq T\right\}$ is a numerical semigroup. Recently a paper appeared counting the number of numerical sets T where $A(T)$ is a numerical semigroup of maximal genus. We count the number of numerical sets T where $A(T)$ is a numerical semigroup of almost-maximal genus, i.e. genus one smaller than maximal.

Keywords : numerical semigroup; numerical set; genus; atom monoid
Mathematics Subject Classification (2020) : 20M14

1 Introduction

A numerical set is a cofinite subset of the nonnegative integers \mathbb{N}_{0} containing 0 . A numerical set closed under addition is called a numerical semigroup. The maximum integer missing from a numerical set or semigroup is called its Frobenius number. The number of positive integers that a numerical set or semigroup does not contain is called its genus. Numerical semigroups have been the subject of considerable study (e.g. [2, 4]); for a general reference see [1] or [6].

Let T be a numerical set. Set $A(T)=\left\{n \in \mathbb{N}_{0}: n+T \subseteq T\right\}$. This is known to be a numerical semigroup, called its atom monoid, with $A(T) \subseteq T$. For a fixed numerical semigroup S, we write $N(S)$ to denote the number of numerical sets T satisfying $A(T)=S$. Numerical sets and their atom monoids have been of interest lately due to their connection with core partitions (see [3]).

Fairly recently [5] appeared, which fixed the Frobenius number f and considered all 2^{f-1} numerical sets with that Frobenius number. It focused on the numerical semigroup with Frobenius number f and maximal genus, i.e. $S_{f}=\{0, f+1, f+2, \ldots\}=\{0, f+1, \rightarrow\}$.

[^0]It determined bounds on $N\left(S_{f}\right)$, and also found the asymptotic $\operatorname{limit}_{\lim }^{f \rightarrow \infty}$ $\frac{N\left(S_{f}\right)}{2^{f-1}}$ to be approximately 0.48 .

We wish to extend this work with Frobenius number f, from the maximum genus of f to the almost-maximum genus of $f-1$. Hence, we consider the semigroups $S_{f}(l)=$ $\{0, f-l, f+1, \rightarrow\}$. We call a numerical set T with $A(T)=S_{f}(l)$ both (f, l)-good and f good. We set $N\left(S_{f}(l)\right)$ to denote the number of (f, l)-good numerical sets, and $N\left(S_{f}(\star)\right)$ to denote the number of f-good numerical sets (over all l). We now look for bounds for $N\left(S_{f}(l)\right)$ and $N\left(S_{f}(\star)\right)$, as well as the asymptotic limit $\lim _{f \rightarrow \infty} \frac{N\left(S_{f}(\star)\right)}{2^{f-1}}$. We first observe that if $l \geq \frac{f}{2}$, then $(f-l)+(f-l) \in S_{f}(l)$, as this is a semigroup and hence closed under addition; this will render the result no longer of the desired genus. Hence we must have $l<\frac{f}{2}$, and thus $N\left(S_{f}(\star)\right)=N\left(S_{f}(1)\right)+N\left(S_{f}(2)\right)+\cdots+N\left(S_{f}\left(\left\lfloor\frac{f-1}{2}\right\rfloor\right)\right)$.

For a numerical set T and $x \in T$, we say that y is a witness to x if $y \in T$ and $x+y \notin T$. This leads to a simple characterization of $A(T)$, for all numerical sets.

Proposition 1.1 Given numerical set T and $x \in T, x \notin A(T)$ if and only if there is some witness to x.

Proof. If y is a witness to x, then $x+y \in x+T$ but $x+y \notin T$, so $x \notin A(T)$. If there is no witness to x, then for all $y \in \mathbb{Z}$, if $y \in T$ then $x+y \in T$; hence $x+T \subseteq T$ and thus $x \in A(T)$.

Suppose that T is an (f, l)-good numerical set. For $x=f-l$ and for $x>f$, we must have $x \in T$ since $A(T) \subseteq T$. Also, $f \notin T$ since $T, A(T)$ share the same Frobenius number.

We now present a result specific to our $S_{f}(l)$ context.
Proposition 1.2 Let T be an (f, l)-good numerical set, and $x \in \mathbb{Z}$. If $x \in T$ then $x+f-l \in T$.
Proof. If $x+f-l \notin T$, then x would be a witness to $f-l$, and hence $f-l \notin T$. But this is impossible since T is (f, l)-good.

2 Upper Bounds

In this section we provide some structural information about (f, l)-good sets, as well as an upper bound for their number.

Recall that if T is an (f, l)-good numerical set, then $f-l \in T$. Hence $l \notin T$, or else by Proposition 1.2 we would have $l+(f-l)=f \in T$. Set

$$
Y=\{1,2, \ldots, l-1\} \cup\{l+1, \ldots, f-l-1\} \cup\{f-l+1, \ldots, f-1\}
$$

a union of three intervals of length $l-1, f-2 l-1$, and $l-1$, respectively. All (f, l)-good numerical sets consist of a subset of Y, together with all of $S_{f}(l)$. Hence, naively we get an upper bound for $N\left(S_{f}(l)\right)$ of $2^{|Y|}=2^{f-3}$. We use Proposition 1.2 to improve this.

Theorem 2.1 For fixed l, f, the number of (f, l)-good numerical sets $N\left(S_{f}(l)\right)$ satisfies

$$
N\left(S_{f}(l)\right) \leq 3^{l-1} 2^{f-2 l-1}
$$

Proof. For each $x \in\{1,2, \ldots, l-1\}$, we have $x+f-l \in\{f-l+1, \ldots, f-1\}$. This yields $l-1$ pairs $\{x, x+f-l\}$. By Proposition 1.2, if T is (f, l)-good and $x \in T$, then $x+f-l \in T$. Hence each pair gives three possibilities: neither element in T, both elements in T, or just $x+f-l \in T$. The fourth possibility, of just $x \in T$, is forbidden. This reduces the naive upper bound by a factor of $(3 / 4)^{l-1}$.

Corollary 2.2 For a fixed f, the number of f-good numerical sets $N\left(S_{f}(\star)\right)$ satisfies

$$
N\left(S_{f}(\star)\right) \leq 2^{f-1}\left(1-\left(\frac{\sqrt{3}}{2}\right)^{f-1}\right)
$$

Proof. Set $t=\lfloor(f-1) / 2\rfloor$, and we have

$$
\begin{gathered}
N\left(S_{f}(\star)\right)=\sum_{l=1}^{t} N\left(S_{f}(l)\right) \leq \sum_{l=1}^{t} 3^{l-1} 2^{f-2 l-1}=\frac{2^{f-1}}{3} \sum_{l=1}^{t}\left(\frac{3}{4}\right)^{l}=\frac{2^{f-1}}{3} \frac{\frac{3}{4}-\left(\frac{3}{4}\right)^{t+1}}{1-\frac{3}{4}} \\
=2^{f-1}\left(1-\left(\frac{3}{4}\right)^{t}\right) \leq 2^{f-1}\left(1-\left(\frac{3}{4}\right)^{\frac{f-1}{2}}\right)
\end{gathered}
$$

Corollary 2.2 bounds $N\left(S_{f}(\star)\right)$ away from its maximum value of 2^{f-1}, proving that not all numerical sets are good ${ }^{11}$. Unfortunately, it is not sufficient to bound the asymptotic limit $\lim _{f \rightarrow \infty} \frac{N\left(S_{f}(\star)\right)}{2^{f-1}}$ away from 1, much less away from 0.52.

3 Lower Bounds

We now turn to a lower bound for $N\left(S_{f}(l)\right)$, which we provide in the following.
Theorem 3.1 For fixed l, f, the number of (f, l)-good numerical sets $N\left(S_{f}(l)\right)$ satisfies

$$
N\left(S_{f}(l)\right) \geq 2^{\left\lceil\frac{l-1}{2}\right\rceil+\left\lceil\frac{f-2 l-1}{2}\right\rceil}
$$

Proof. We will define $\left\lceil\frac{l-1}{2}\right\rceil+\left\lceil\frac{f-2 l-1}{2}\right\rceil$ subsets of Y, each of which may independently be included, or not, in an (f, l)-good numerical set.

First, for $x \in\left\{1,2, \ldots,\left\lceil\frac{l-1}{2}\right\rceil\right\}$, we consider the set

$$
Q_{x}=\{x, f-x, x+f-l, l-x\} .
$$

Note that since $1 \leq x \leq \frac{l}{2}, f-\frac{l}{2} \leq f-x \leq f-1$ and $f-l+1 \leq x+f-l \leq f-\frac{l}{2}$ and $\frac{l}{2} \leq l-x \leq l-1$. Consequently, $x \leq l-x<x+f-l \leq f-x$. In particular, $Q_{x} \neq Q_{y}$ for $x \neq y$, and $\left|Q_{x}\right|=4$ (unless $x=\frac{l}{2}$, in which case $\left|Q_{x}\right|=2$). Also, note that

$$
\bigcup Q_{x}=\{1,2, \ldots, l-1\} \cup\{f-l+1, \ldots, f-1\}
$$

[^1]leaving the subset $\{l+1, \ldots, f-l-1\}$ of Y undisturbed. Note that for each $y \in Q_{x}$, also $f-y \in Q_{x}$, and these are witnesses for each other as their sum is $f \notin T$. Hence, if $Q_{x} \subseteq T$, then $Q_{x} \cap A(T)=\emptyset$.

Now, for $x \in\left\{l+1, \ldots,\left\lceil\frac{f-1}{2}\right\rceil\right\}$, we consider the set $R_{x}=\{x, f-x\}$. Note that since $l+1 \leq x \leq \frac{f}{2}, \frac{f}{2} \leq f-x \leq f-l-1$. Consequently, $R_{x} \neq R_{y}$ for $x \neq y$, and $\left|R_{x}\right|=2$ (unless $x=\frac{f}{2}$, in which case $\left|R_{x}\right|=1$). Note that

$$
\bigcup R_{x}=\{l+1, l+2, \ldots, f-l-1\}
$$

so $R_{x} \cap Q_{y}=\emptyset$ for all x, y. For each $y \in R_{x}$, also $f-y \in R_{x}$. These are witnesses for each other, and so if $R_{x} \subseteq T$, then $R_{x} \cap A(T)=\emptyset$.

Let T contain $S_{f}(l)$, together with an arbitrary collection of the subsets Q_{x}, R_{x}. In particular, $l, f \notin T$ and $f-l \in T$. By the above, $Y \cap A(T)=\emptyset$. It is easy to see that $0 \in A(T), f \notin A(T)$, and $x \in A(T)$ for all $x>f$.

The only remaining concern is to prove that $f-l \in A(T)$. Suppose instead that $f-l \notin A(T)$. Then there would be some witness $y \in T$ with $y+f-l \notin T$. Note that if $y \geq l+1$, then $y+f-l \geq f+1$, and so $y+f-1 \in T$ and y cannot be a witness. In particular, it could not be among the R_{x} sets. If there is some x with $y \in Q_{x}$, then either $y=x$ or $y=l-x$ (else $y \geq l+1$ again). But for both of these choices, $y+f-l \in Q_{x}$ again, so y is again not a witness. Hence $f-l \in A(T)$.

Corollary 3.2 For a fixed f, the number of f-good numerical sets $N\left(S_{f}(\star)\right)$ satisfies

$$
N\left(S_{f}(\star)\right) \geq \frac{2^{\frac{f-3}{2}}}{\sqrt{2}-1}\left(1-2^{-\frac{f-2}{4}}\right)
$$

Proof. We begin with $\left\lceil\frac{l-1}{2}\right\rceil+\left\lceil\frac{f-2 l-1}{2}\right\rceil \geq \frac{f-l-2}{2}$. Set $t=\lfloor(f-1) / 2\rfloor$, and we have

$$
N\left(S_{f}(*)\right)=\sum_{l=1}^{t} N\left(S_{f}(l)\right) \geq 2^{(f-2) / 2} \sum_{l=1}^{t} 2^{-l / 2}
$$

The sum is a geometric series, and thus

$$
N\left(S_{f}(\star)\right) \geq 2^{(f-2) / 2} \frac{2^{-\frac{1}{2}}-2^{\frac{-t-1}{2}}}{1-2^{-\frac{1}{2}}}=\frac{2^{\frac{f-3}{2}}}{\sqrt{2}-1}\left(1-2^{-\frac{t}{2}}\right) \geq \frac{2^{\frac{f-3}{2}}}{\sqrt{2}-1}\left(1-2^{-\frac{f-2}{4}}\right)
$$

Although Corollary 3.2 provides a nontrivial lower bound for $N\left(S_{f}(\star)\right)$, it is not sufficient to bound the asymptotic limit $\lim _{f \rightarrow \infty} \frac{N\left(S_{f}(\mathrm{*})\right)}{2^{f-1}}$ away from 0 . We conjecture that this holds, and, more strongly, that for a fixed $l, \lim _{f \rightarrow \infty} \frac{N(l, f)}{2^{f-1}} \in(0,1)$.

We lastly observe that preprint [7] has very recently been made public, extending the above work, addressing our conjectures, and bounding the asymptotic limit $\lim _{f \rightarrow \infty} \frac{N\left(S_{f}(\star)\right)}{2^{f-1}}$ away from 0 .

Acknowledgments

The authors would like to thank the anonymous referee, whose efforts significantly improved this work.

References

[1] A. Assi and P.A. García-Sánchez, Numerical semigroups and applications, RSME Springer Series, vol. 1 Springer, 2016.
[2] S.T. Chapman, C. O'Neill, Factoring in the Chicken McNugget monoid, Math. Mag., 91 (2018), 323-336.
[3] H. Constantin, B. Houston-Edwards, N. Kaplan, Numerical sets, core partitions, and integer points in polytopes, in Combinatorial and additive number theory. II, Springer Proc. Math. Stat. vol. 220, 99-127, Springer, 2017.
[4] N. Kaplan, Counting numerical semigroups, Amer. Math. Monthly, 124 (2017), 862-875.
[5] J. Marzuola, A. Miller, Counting numerical sets with no small atoms, J. Combin. Theory Ser. A, 117 (2010), 650-667.
[6] J.C. Rosales, P.A. García-Sánchez, Numerical semigroups, Developments in Mathematics vol 20, Springer, 2009.
[7] D. Singhal, Y. Lin, Associated semigroups of numerical sets with fixed Frobenius number, arXiv:1912.09355v1 [math.CO], 2019. Available online at the URL:https://arxiv.org/abs/1912. 09355

Joshua Arroyo
Department of Mathematics
Rose-Hulman Institute of Technology
5500 Wabash Avenue
Terre Haute, IN 47803
E-mail: arroyoje@rose-hulman.edu

Jackson Autry
Department of Mathematics
Texas A\&M University
Mailstop 3368
College Station, TX 778343-3368
E-mail: j.connor.autry@gmail.com

Charlotte Crandall
Department of Mathematics and Statistics
Smith College
Burton Hall 115
Northampton, MA 01063
E-mail: ccrandall@smith.edu

Jess Lefler
Department of Mathematics and Statistics
Slippery Rock University
1 Morrow Way
Slippery Rock, PA 16057
E-mail: jess1lefler@gmail.com

Vadim Ponomarenko
Department of Mathematics and Statistics
San Diego State University
5500 Campanile Dr.
San Diego, CA 92182-7720
E-mail: vponomarenko@sdsu.edu

Received: January 13, 2020 Accepted: April 17, 2020
Communicated by Darren A. Narayan

[^0]: *This work was supported by an REU grant (NSF grant No. 1851542)

[^1]: ${ }^{1}$ Not a major observation, in light of the bound in 5].

