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1. INTRODUCTION

A powerful tool in studying nonunique factorization in integral domains
or monoids is that of Cale representations, which capture internal features
at a finer level than the original structure. Inspired by [7] and [8], Cale
theory was first defined in [3]. See Chapter 7 of [1] for a full treatment,
including examples in algebraic number rings, Diophantine monoids, Krull
monoids, polynomial rings, coordinate rings, semigroup rings, and others.

We now recall the necessary properties of Cale monoids. Let M be
a commutative and cancellative atomic monoid with units M×. We call
Q ⊆ M a Cale basis of M , if the monoid generated by Q (denoted by [Q])
is factorial and for every x ∈ M , there is some power xn ∈ M×[Q]. If M
possesses a Cale basis, we call M a Cale monoid. We note that Cale bases
are not unique; however they are closely related. Because M is atomic, we
may choose Q to have each of its elements irreducible in M ; this can be
shown to determine Q uniquely. Suppose that q, r are both elements of a
Cale basis, that differ by a unit. We can therefore express q = εr for some
unit ε. But this violates the unique Cale representation of q; it is both q1r0

and εq0r1.
A key tool used with Cale bases is the extraction degree λ. For x ∈ M ,

write xn = ε
∏

q∈Q

qmq , where ε ∈ M× and all but finitely many mq are zero.

For q ∈ Q, we define λ(q, x) = mq

n . Note that because [Q] is factorial, this
is well-defined, and independent of the choice of n. Let Qx = {q ∈ Q :
λ(q, x) > 0} be the span of x.

For x, y ∈ M , we set λ(x, y) = min
{

λ(q,y)
λ(q,x) : q ∈ Qx

}
, where we set

λ(x, y) = +∞ if x ∈ M×; equivalently, if Qx = ∅. We set Qx,y ⊆ Qx such
that λ(x, y) = λ(q,y)

λ(q,x) for all q ∈ Qx,y.
The relevant properties of λ are summarized in the following.

Theorem 1.1. Let x, y, z ∈ M .

1.If x, y ∈ Q with x 6= y, then λ(x, y) = 0 and λ(x, x) = 1.
2.λ(x, y) = sup

{
m
n : m ∈ Z≥0, n ∈ Z>0, xm|yn

}
3.Let k, l ∈ Z>0; then kλ(xk, yl) = lλ(x, y).
4.λ(xy, z) ≤ min (λ(x, z), λ(y, z)).
5.λ(x, yz) ≥ λ(x, y) + λ(x, z). If x ∈ Q, then equality holds.

We recall several special types of Cale monoids. Let QM be the quotient
group for monoid M . We call M root-closed if M = {x ∈ QM |xn ∈
M for some n ∈ Z>0}. We call M tame if for every q ∈ Q there exists
some t ∈ Z>0 such that tλ(q, x) ∈ Z≥0 for all x ∈ M . We set t(q) to be the
minimum such t.
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These types of Cale monoids are quite common. All valuation monoids
and generalized Krull monoids are root-closed. All outside factorial monoids
are both root-closed and tame. All Krull monoids with torsion class groups
are both root-closed and tame. See [1] for more examples; therein, all Cale
monoids are assumed to be tame.

We begin by developing additional properties of λ for Cale monoids
in general, and other properties for root-closed and tame Cale monoids.
Then, we turn our attention to a specific type of Cale monoid, namely the
block monoid of a finite abelian group. For these monoids, consider the
set of elements B and the set of irreducible elements A. We determine
λ(B, B), λ(A, B), λ(B, A), and λ(A, A), where λ(S, T ) = {λ(s, t) : s ∈
S, t ∈ T} for sets S, T . Of these, the most interesting result is λ(A, A),
which has three forms depending on whether G is cyclic, of the form
Z2 ⊕ Z2n, or otherwise. We use the notation (e, f) to denote the open
interval between real numbers e and f .

2. EXTRACTION DEGREE IN CALE MONOIDS

We first develop some simple properties of the extraction degree. We
assume henceforth that M is a Cale monoid (hence commutative, cancella-
tive, and atomic).

Theorem 2.1. Let x, y ∈ M .

1.Suppose that x = x1x2 · · ·xk. Then 1
λ(x,y) ≤ 1

λ(x1,y) + · · ·+ 1
λ(xk,y) .

2.λ(x, y) = 0 if and only if Qx * Qy.
3.λ(x, y) ≥ 1 if and only if λ(q, x) ≤ λ(q, y) for all q ∈ Q.

Proof.

1. Let q ∈ Qx,y. Then 1
λ(x,y) = λ(q,x)

λ(q,y) =
∑

i λ(q,xi)

λ(q,y) =
∑

i
λ(q,xi)
λ(q,y) ≤∑

i
1

λ(xi,y) , where the inequality follows from the definition of λ.

2. λ(x, y) = 0 if and only if there is some q ∈ Qx with λ(q, y) = 0, which
is true if and only if there is some q ∈ Qx \Qy.

3. λ(q, x) ≤ λ(q, y) for all q ∈ Q if and only if 1 ≤ λ(q,y)
λ(q,x) for all x ∈ Qx,

which in turn is true if and only if 1 ≤ λ(x, y).

The following result is tight in the sense that examples can be constructed
where Qx ( Qy ( Qz and Qxz ( Qx,y and Qxz ( Qyz. It is, however,
possible to extend it in trivial ways by considering various of x, y, z in M×.
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Theorem 2.2. Let x, y, z ∈ M \ M×. Then λ(x, y)λ(y, z) ≤ λ(x, z),
with equality if and only if either:

1.Qx * Qz; or
2.Qx ⊆ Qy ⊆ Qz and Qxz = Qx,y ∩Qyz 6= ∅.

Proof. If either Qx * Qy or Qy * Qz, then the left side of the inequality
is zero; hence the result holds. Otherwise, we have Qx ⊆ Qy ⊆ Qz. Let
q ∈ Qxz ⊆ Qx ⊆ Qy. Then λ(x, z) = λ(q,z)

λ(q,x) = λ(q,y)
λ(q,x)

λ(q,z)
λ(q,y) ≥ λ(x, y)λ(y, z).

If both sides of the inequality are zero, then Qx * Qz. Conversely, if
Qx * Qz, then either Qx * Qy or Qy * Qz (or both); hence both sides of
the inequality are zero.

If nonzero equality holds, then q ∈ Qxz ∩Qyz ∩Qx,y. Further, since both
sides are nonzero, Qx ⊆ Qy ⊆ Qz. The same equality holds for any other
element besides q of Qxz; hence, Qxz ⊆ Qxz ∩Qyz ∩Qx,y and consequently
Qxz ⊆ Qyz∩Qx,y. Now, let q′ ∈ Qx,y∩Qyz. Then, since q′ ∈ Qx,y, we have
λ(x, y) = λ(q′,y)

λ(q′,x) = λ(q,y)
λ(q,x) ; hence λ(q′,x)

λ(q,x) = λ(q′,y)
λ(q,y) . But also, since q′ ∈ Qyz,

we have λ(q′,y)
λ(q,y) = λ(q′,z)

λ(q,z) . Combining, we have λ(q′,x)
λ(q,x) = λ(q′,z)

λ(q,z) and therefore

λ(x, z) = λ(q′,z)
λ(q′,x) = λ(q,z)

λ(q,x) , so q′ ∈ Qxz and hence Qyz ∩Qx,y ⊆ Qxz.

Conversely, if we let q ∈ Qxz∩Qyz∩Qx,y, equality will hold in λ(q,y)
λ(q,x)

λ(q,z)
λ(q,y) ≥

λ(x, y)λ(y, z).

The following reciprocity theorem follows directly from Theorem 2.2.

Theorem 2.3. Suppose that x, y ∈ M \M×. Then λ(x, y)λ(y, x) ≤ 1,
with equality if and only if Qx = Qy = Qx,y = Qyx 6= ∅.

Proof. With the observation that λ(x, x) = 1 for any x /∈ M× the
inequality follows. If equality holds, then Qx ⊆ Qy ⊆ Qx and hence
Qx = Qy. Let q ∈ Qx,y ∩ Qyx, and q′ ∈ Qx = Qy. Compare A = λ(q′,y)

λ(q′,x)

to B = λ(q,y)
λ(q,x) . We must have A ≥ B since q ∈ Qx,y. However, we

take reciprocals and find that 1/A ≥ 1/B since q ∈ Qyx. Hence A = B
and q′ ∈ Qx,y ∩ Qyx. Therefore Qx ⊆ Qx,y ∩ Qyx ⊆ Qx and there-
fore Qx = Qx,y ∩ Qyx. Let q ∈ Qx,y ∩ Qyx and q′ ∈ Qx,y. We have
λ(q′,y)
λ(q′,x) = λ(q,y)

λ(q,x) . We take reciprocals and find that q′ ∈ Qyx; hence

Qx,y ⊆ Qx,y ∩Qyx. Therefore Qx,y ⊆ Qyx; by symmetry Qx,y = Qyx.

We turn now to special Cale monoids. Recall that M is root-closed if
M = {x ∈ QM |xn ∈ M for some n ∈ Z>0}. We have two results for Cale
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monoids requiring this additional property; the first is rather specific but
needed in the sequel; the second bounds λ(x, y) if y is irreducible.

Proposition 2.1. Suppose that M is root-closed. Let q ∈ Q, and let
x ∈ M with Qx = {q}. Then x = εqn for some n ∈ Z>0 and some ε ∈ M×.

Proof. It suffices to show that q|x, because then x
q satisfies the same hy-

potheses and we proceed by induction. Write xn = εqm for some ε ∈ M×.
If m < n, then in QM we write 1

ε xn−m = ( q
x )m. Since M is root-closed and

1
ε xn−m ∈ M , we have q

x ∈ M , contradicting the irreducibility of q. Hence
m ≥ n. But now we write, in QM , (x

q )n = εqm−n ∈ M . Since M is root-

closed, x
q ∈ M and thus q|x.

Theorem 2.4. Suppose that M is root-closed. Let x, y ∈ M \M× with y
irreducible. Then λ(x, y) ≤ 1. Further, equality holds if and only if x = εy,
for some ε ∈ M×.

Proof. First, we note that if x = εy for ε ∈ M×, then λ(x, y) = 1.
Conversely, if λ(x, y) = 1, then x, y have the same Cale representation (up
to a unit).

Now, suppose that 1 < λ(x, y) = m
n , where xm|yn. We can write yn =

xmz, for some z ∈ M . Because m
n > 1, we have m > n. In QM , we

can write ( y
x )n = xm−nz. But since m > n, xm−nz ∈ M . Because M

is root-closed, y
x ∈ M and hence x|y. Since x /∈ M×, y is reducible.

We now turn to root-closed tame Cale monoids. We recall that if M
is tame then each q ∈ Q has an associated integer t(q), which is minimal
such that t(q)λ(q, x) ∈ Z≥0 for all x ∈ M . For x ∈ M , let us define
t(x) = lcm{t(q) : q ∈ Qx} and t(M) = lcm{t(q) : q ∈ Q}. These are chosen
so that t(x)λ(q, x) ∈ Z≥0 for all x ∈ M and q ∈ Q; also t(M)λ(q, x) ∈ Z≥0.
Clearly t(q) ≤ t(x) ≤ t(M) for all x ∈ M and q ∈ Qx.

Under these assumptions, we have two results. The first characterizes
prime elements of such monoids, and the second produces gaps in the ex-
traction degree (under certain irreducibility assumptions).

Theorem 2.5. Suppose that M is root-closed and tame. Let x ∈ M .
x is prime if and only if there is some ε ∈ M×, with εx ∈ Q and with
t(εx) = 1.

Proof. Suppose that x is prime. Write xn = ε
∏

q∈Q

qmq . x divides this

expression; hence x divides some q ∈ Q. However, all elements of Q are
irreducible; hence εx = q, for some ε ∈ M×. It now suffices to show
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that λ(q, x) ∈ Z for all x ∈ M . Let x ∈ M , and write xn = ε
∏

q∈Q

qmq ,

where ε ∈ M×. If mq = 0, then λ(q, x) = 0. Otherwise, q|xn = xx · · ·x.
Since q is prime, q|x; hence mq ≥ n. But now we consider, in QM , that
(x

q )n = ε
qn

∏
q∈Q

qmq ∈ M . Hence x
q ∈ M and we can continue to divide both

sides by qn; at each step, either we have exhausted the q’s from both sides,
or q divides both sides. The process must end since M is atomic. Hence,
the original power of q (mq) must have been an integral multiple of n, as
desired.

Suppose now that λ(q, x) ∈ Z for all x ∈ M . Suppose that q|xy.
Therefore, λ(q, xy) ∈ Z≥1. Write λ(q, xy) = λ(q, x) + λ(q, y), a sum of
two integers. Without loss of generality assume that λ(q, x) ≥ 1. We
write xn = ε

∏
q∈Q

qmq , where ε ∈ M× and mq ≥ n. By dividing both

sides by qn (in QM) we find that x
q ∈ M and hence q|x, as desired.

Theorem 2.6. Suppose that M is root-closed and tame. Let x, y ∈ M .
If x is irreducible then λ(x, y) /∈ (0, 1

t(x) ). If y is irreducible but not prime
then λ(x, y) /∈ (1− 1

t(y) , 1).

Proof. Suppose that x is irreducible. For some q ∈ Qx,y, we have
λ(x, y) = λ(q,y)

λ(q,x) = t(q)λ(q,y)
t(q)λ(q,x) . We have t(q)λ(q, y) ∈ Z; in particular, either

λ(q, y) = 0 (in which case λ(x, y) = 0), or t(q)λ(q, y) ≥ 1. By the previous
theorem, λ(q, x) ≤ 1. By definition of t(x) we have t(q) ≤ t(x). Hence,
t(q)λ(q, x) ≤ t(x), and hence λ(x, y) ≥ 1

t(x) .

Suppose now that y is irreducible. Again we have λ(x, y) = λ(q,y)
λ(q,x) =

t(q)λ(q,y)
t(q)λ(q,x) . We have t(q)λ(q, x) ∈ Z. Further, by the previous theorem, we
have λ(q, y) ≤ 1. If λ(q, y) < 1, then t(q)λ(q, y) ≤ t(q) − 1. Hence, either
λ(x, y) ≥ 1 or (for some integer α ≤ t(q)), λ(x, y) ≤ α−1

α = 1 − 1
α ≤

1− 1
t(q) ≤ 1− 1

t(y) , as desired. Otherwise we have λ(q, y) = 1, and we have
y = εq for some ε ∈ M× and hence λ(x, y) = λ(x, q). Either λ(x, y) = 0
or Qx = {q}; in the latter case, by Proposition 2.1, λ(x, y) = λ(qn, q) =
1
n /∈ (1 − 1

t(y) , 1), apart from the special case t(y) = 1, which is excluded

by assumption and Theorem 2.5.

3. BLOCK MONOIDS

We turn now to the important special case of block monoids. Consider
a fixed finite abelian group G, written additively, with the set of nonzero
elements denoted by G?. For g ∈ G, let |g| denote the order of g in
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G, and let 〈g〉 be the subgroup of G generated by g. Consider B(G),
the collection of all multisets of elements of G? that have sum zero in
G. Write x ∈ B(G) as x = g

mg1
1 g

mg2
2 · · · gmgk

k ; by definition we have
mg1g1+mg2g2+· · ·+mgk

gk = 0. B(G) forms a monoid under the operation
of multiset union (with the empty multiset serving for identity). B(G) is
a Krull monoid, as shown in [6], and is therefore root-closed and tame.

The Cale basis of B(G) is easily seen to be Q = {g|g| : g ∈ G?}. Let
x ∈ B(G); we see that λ(g|g|, x) = mg

|g| . Apart from the trivial case of
G = Z2 (which we will ignore henceforth), we can always construct some
x ∈ B(G) that has mg = 1; hence t(g|g|) = |g|. Consequently, t(B(G))
is the exponent of G, exp(G). Let x ∈ B(G); we see that Qx = {g|g| :
mg > 0}. Let x, y ∈ B(G), where x =

∏
gmg , y =

∏
gng . We then see that

λ(x, y) = min{ ng

mg
: mg > 0}.

All of these characterizations make block monoids particularly appeal-
ing for study. Let A(G) be the atoms of B(G). In this section, we deter-
mine λ(B(G), B(G)), λ(A(G), A(G)), λ(A(G), B(G)), and λ(B(G), A(G)),
where λ(S, T ) = {λ(s, t) : s ∈ S, t ∈ T}. We do not know which of these
results, if any, have analogues for general Cale monoids; this is a topic for
further study.

Theorem 3.1. λ(B(G), B(G)) = Q≥0

Proof. It suffices to show that Q≥0 ⊆ λ(B(G), B(G)). Let n
m ∈ Q≥0.

Let g ∈ G?, and set x = g|g|m, y = g|g|n. Evidently x, y ∈ B(G), and
λ(x, y) = n

m , as desired.

An interesting phenomenon occurs in cyclic groups that does not occur
in higher-rank groups.

Theorem 3.2. Suppose that |G| > 2. Let g ∈ G?. Then:

1.|g|λ(g|g|, B(G)) = Z≥0.
2.If <g>6= G, then |g|λ (

g|g|, A(G)
)

= {0, 1, . . . , |g|}.
3.If <g>= G, then |g|λ(g|g|, A(G)) = {0, 1, . . . , |g| − 2, |g|}.

Proof. First, let m ∈ Z≥0, and let h ∈ G? \ {g}. Set x = gm(g −
h)m+|G|−|g|hm+|G|−|g|; this is in the block monoid though is not necessarily
irreducible. Because neither g − h nor h are equal to 0 or g, we have
λ(g|g|, x) = m

|g| .
Let m ∈ {0, 1, . . . , |g|}; it suffices to construct x ∈ A(G) with mg = m.

If m = 0, let x = h|h| for some h 6= g. If m = |g|, let x = g|g|. For all other
m besides |g| − 1, set h = (|g| −m)g, and set x = gmh1. x has sum zero,
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and no proper submultiset has sum zero. Because 0 < m < |g| − 1, h 6= 0
and h 6= g. For all of these cases λ(g|g|, x) = m

|g| .
It remains to consider m = |g| − 1. If <g> 6= G, choose h ∈ G?\ <g>.

Set x = g|g|−1(g + h)1(−h)1. By choice of h, no proper submultiset of x
has sum zero; further, neither g + h nor −h are equal to 0 or g. Hence,
λ(g|g|, x) = |g|−1

|g| .
If, however, <g>= G, then it is not possible to have x ∈ A(G) with

mg = |g| − 1 = |G| − 1. The reason is that g|g|−1 does not have sum zero;
however its submultisets make all other elements of G. Therefore, for any
h ∈ G? with h 6= g, g|g|−1h will have a proper submultiset with zero sum.

This allows us to compute λ(A(G),B(G)), as follows. For sets A,B, let
A
B = {a

b : a ∈ A, b ∈ B}.
Corollary 3.1. Let S = {1, 2, . . . , exp(G)}, S′ = S \ {exp(G)− 1}.
If G is not cyclic, then λ(A(G),B(G)) = Z≥0

S .
If G is cyclic, then λ(A(G),B(G)) = Z≥0

S′ .

Proof. The only difficulty in applying Theorem 3.2 is that since λ(x, y) =
min{λ(q,y)

λ(q,x) : q ∈ Qx}, the desired q ∈ Qx might not be in Qx,y. However,
since y need not be irreducible, we may simply add copies of the undesir-
able q′ to y; this increases λ(q′,y)

λ(q′,x) by one. By adding sufficiently many such

copies, we can force the desired q to be minimal.

We next have a number-theoretic lemma, necessary in the sequel.

Lemma 3.1. Let a, b, n be positive integers. Suppose that a ≤ n− 2 and
that a < b. Then a

b > n−2
n if and only if a = b− 1 and n

2 < b < n.

Proof. First, some algebra shows that n
2 < b if and only if b−1

b > n−2
n .

This establishes one direction. If b ≥ n, then a
b ≤ n−2

n , a contradiction.
Similarly, if n

2 ≥ b, then we have a
b ≤ b−1

b ≤ n−2
n , another contradiction.

Hence n
2 < b < n; a bit of algebra now shows that b−2

b < n−2
n . If a ≤ b− 2,

then again we have the contradiction a
b ≤ b−2

b < n−2
n ; thus a = b− 1.

Note that for cyclic G, t(B(G)) = |G|. Therefore, one of the bounds of
Theorem 2.6 is λ(B(G), A(G)) ∩ (1 − 1

|G| , 1) = ∅. The following sharpens
this bound. In fact, this is best possible, as will be shown in Theorem 3.4.

Lemma 3.2. Let G be cyclic with |G| > 2. Then
λ(B(G), A(G)) ∩ (1− 2

|G| , 1) = ∅.
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Proof. Let x ∈ B(G), y ∈ A(G), and let g|g| ∈ Qx,y. Note that if
|g| < |G| then the desired result follows from Theorem 2.6 and Lagrange’s
theorem. Hence we assume |g| = |G|; furthermore, we may apply an auto-
morphism to G and assume that g = 1. For convenience, write q = 1|G|.
By Theorem 3.2, |G|λ(q, y) ∈ {0, 1, . . . , |G| − 2, |G|}. By Theorem 2.4,
λ(q, x) ≥ λ(q, y). We now argue by way of contradiction; we assume that
λ(x, y) ∈ (1 − 2

|G| , 1). Since λ(x, y) < 1 we may apply Lemma 3.1 to get

λ(q, y) = λ(q, x)− 1 and |G|
2 < λ(q, x) < |G|.

Write y = 1mgm1
1 gm2

2 · · · gmk

k . Note that m = λ(q, y) ≥ |G|−1
2 . We claim

now that m1+m1g1+m2g2+· · ·+mkgk = |G|, where the terms are treated
as integers1. Consider g1, 2g1, . . . , m1g1,m1g1 + g2,m1g1 +2g2, . . . , m1g1 +
m2g2 + · · ·+ mkgk. These terms are monotonically increasing (in Z), and
the last term is α|G| −m, for some integer α. If α 6= 1, then there must
be two consecutive terms (say a, b) where a < |G|, and b ≥ |G|+1 (neither
can equal |G| since y is irreducible). Further, since y is irreducible, we
must have a ≤ |G| − m − 1. Now, b − a = gi for some i ∈ [1, k]; hence
gi ≥ m + 2. But also, since y is irreducible, gi ≤ |G| − m − 1. Hence
|G| − m − 1 ≥ m + 2. Hence m ≤ |G|−3

2 , which contradicts m ≥ |G|−1
2 ;

therefore α = 1 and y sums to |G| in Z.
Now, write x = 1m+1gn1

1 gn2
2 · · · gnk

k . Note that the group elements in x
must be some subset of those in y, by Theorem 2.1. Because λ(x, y) >
1 − 2

|G| , we must have mi

ni
> 1 − 2

|G| for each i ∈ [1, k]. However, if any
of these fractions were less than 1, we could again apply Lemma 3.1 to
get mi ≥ |G|−1

2 ; this is impossible, as then the sum of y (as integers)
would be at least 1m + 2mi > |G|. Hence, each mi

ni
= 1, and there-

fore x = y ∪ {1}. But, the sum (in Z) of x is |G| + 1, which is not a
multiple of |G|; hence x is not in B(G), which is violative of hypothesis.

We next have what appears to be an obscure lemma; however it is critical
in the classification of λ(A(G),A(G)) which follows.

Lemma 3.3. Suppose that G = Z2 ⊕ Z2n. Then 2n−2
2n−1 /∈ λ(A(G),A(G)).

Proof. By way of contradiction, suppose that x, y ∈ A(G), g|g| ∈ Qx,y,
λ(g|g|, x) = 2n − 1, λ(g|g|, y) = 2n − 2. However, the largest atom2 in G
is of cardinality 2n + 1. Hence x = g|g|−1ef , for some e, f ∈ G?. Both
are necessary, since x has sum 0 in G. They must be distinct, since oth-
erwise e + e = g, which is not possible because |g| = 2n and |2e| ≤ n.

1Atoms with this property are called basic; this notion was defined in [2] and explored
in [10].

2This cardinality is known as the Davenport constant, and has been thoroughly stud-
ied. For an introduction, see [9] or [4].
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Applying Theorem 2.1, we see that y = g|g|−2efd, for some d ∈ G? \ {g}
(d is necessary since otherwise g =

∑
x − ∑

y = 0 − 0 = 0). However,
have d+

∑
x = g +

∑
y; hence d = g, which establishes a contradiction.

We are now ready for the λ(A(G),A(G)) classification theorem.

Theorem 3.3. Let |G| > 2. Set S = {1, 2, . . . , exp(G)}, S0 = S ∪ {0},
S′ = S \ {exp(G)− 1}, S′0 = S′ ∪ {0}. Then λ(A(G), A(G)) is:

1.
{

a
b : a ∈ S′0, b ∈ S′, a

b ≤ 1− 2
exp(G)

}
∪ {1}; for G cyclic.

2.
{

a
b : a ∈ S0, b ∈ S, a

b ≤ 1
} \ { 2n−2

2n−1}; for G ∼= Z2 ⊕ Z2n.
3.

{
a
b : a ∈ S0, b ∈ S, a

b ≤ 1
}
; for all other G.

Proof. One direction follows from Theorem 3.2, Lemma 3.2, and Lemma
3.3; it remains to exhibit x, y ∈ A(G) with λ(x, y) = a

b , for each of the above
a, b. For x = y = g|g|, λ(x, y) = 1; for x = g|g|, y = h|h|, λ(x, y) = 0. We
turn now to λ ∈ (0, 1).

Let g ∈ G have |g| = exp(G). We will construct x, y ∈ A(G), where
x = gb

∏
hmh , y = ga

∏
hnh

∏
fnf , where a

b ≤ nh

mh
for h ∈ x.

If b ≤ |g| − 2 and a ≤ b − 2, then set h = (|g| − b)g, f = (b − a)g. The
conditions imposed on a, b imply that h 6= g and f 6= g (f = h is possible,
but irrelevant). Now, set x = gbh, y = gahf .

If b = |g| and a ≤ b− 2, then set f = (b− a)g. We have f 6= g. Now, set
x = gb, y = gaf .

If b = |g| and a = |g| − 1, then G is not cyclic; take f ∈ G?\ < g >. Set
x = gb, y = ga(g + f)(−f). Neither g + f nor −f are equal to 0 or g.

If b = |g| − 1 and a ≤ b− 2, then G is not cyclic; take h ∈ G?\ <g>. Set
f = (b−a)g, and x = gb(g +h)(−h), y = ga(g +h)(−h)f . By construction,
none of g + h,−h, f are equal to g.

If b = |g| − 1 and a = b − 1, then G is not cyclic. If G/ <g> is not an
elementary 2-group, then take some h ∈ G? with h /∈<g> and 2h /∈<g>.
Now, set x = gb(g + h)(−h), y = ga(g + h)2(−h)2.

Finally, we consider the case of b = |g| − 1, a = b− 1, and H = G/ <g>
an elementary 2-group. H cannot be cyclic, otherwise we have the excluded
case G ∼= Z2 ⊕ Z2n. Hence there are h, f with h /∈<f, g>, f /∈<h, g>, and
<f, h> ∩ <g>= {0}. We set x = gb(g + h)(−h), y = ga(g + h)(−h)(g +
f)(−f).

Here are several examples illustrating this theorem.

Example 3.1.

1. G = Z4. We have S′0 = {0, 1, 2, 4} and S′ = {1, 2, 4}. Theorem 3.3
gives λ(A(G), A(G)) = {0, 1

4 , 1
2 , 1}.
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2. G = Z2 ⊕ Z4. We have S0 = {0, 1, 2, 3, 4} and S = {1, 2, 3, 4}. Theo-
rem 3.3 gives λ(A(G),A(G)) = {0, 1

4 , 1
3 , 1

2 , 3
4 , 1}.

3. G = Z4 ⊕ Z4. We have S0 = {0, 1, 2, 3, 4} and S = {1, 2, 3, 4}. Theo-
rem 3.3 gives λ(A(G),A(G)) = {0, 1

4 , 1
3 , 1

2 , 2
3 , 3

4 , 1}.

As a consequence, we are now able to compute λ(B(G), A(G)).

Theorem 3.4. Let |G| > 2. Set T ′ = {0,1,2,...,exp(G)−2,exp(G)}
Z>0 , and

T = {0,1,2,...,exp(G)}
Z>0 .

If G is cyclic, then λ(B(G), A(G)) = (T ′ ∩ [0, 1]) \ (1− 2
exp(G) , 1).

If G is not cyclic, then λ(B(G), A(G)) = T ∩ [0, 1].

Proof. One direction follows from Theorem 3.2 and Lemma 3.2; it
remains to exhibit x ∈ B(G), y ∈ A(G) with λ(x, y) = a

b , for each of the
above a, b.

Apply Theorem 3.3 to find x, y ∈ A(G) with λ(q, x) = 1, λ(q, y) = a, for
some q ∈ Qx,y. Now, xb ∈ B(G), and λ(q, xb) = b by Theorem 1.1. We have
q ∈ Qxby; hence, λ(x, y) = a

b , as desired.
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