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One of the truly delightful results related to the natural numbers is the following limit
of the ratio of the geometric and arithmetic means of the first n natural numbers:

lim
n→∞

n
√
1 · 2 · 3 · · ·n(

1+2+3+···+n
n

) =
2

e
. (1)

Obviously, the ratio in (1) approaches its limit really slowly. In fact, the relative

difference between the ratio and its limiting value is of order, (n+1)(2n)
−1

, as n → ∞.
For example, this is about 2 percent when n = 100.

Some generalisation of the limit can be found in [1]–[3].
In this note, we offer a short proof and generalisation of limit (1). Our result is

narrower here, but the techniques are wholly different from [1], [2], and [3], and rely
solely, in theory, on algebraic limit properties. Our proof relies on the following well-
known result.

Lemma. [see, e.g., p.81 of [4]] Let an be a sequence of positive reals with lim
n→∞

an+1

an
=

L. Then lim
n→∞

n
√
an = L.

We now establish a generalisation of (1) in the following theorem.

Theorem. Let {bn} be a sequence of positive reals with lim
n→∞

bn − n = 0. Then

lim
n→∞

n
√
b1b2b3 · · · bn(

b1+b2+b3+···+bn
n

) =
2

e
.

Proof. We apply the lemma to an = (
∏n

i=1 bi)/
(
1
n

∑n
i=1 bi

)n
. Note that 1

n

∑n
i=1 bi =

1
n

∑n
i=1(bi − i) + 1

n

∑n
i=1 i, and define cn = 1

n

∑n
i=1(bi − i).

an+1

an
= bn+1

(
cn + n+1

2

)n(
cn+1 +

n+2
2

)n+1 =
bn+1

cn+1 +
n+2
2

(
n+ 1 + 2cn

n+ 2 + 2cn+1

)n

.

Noting that limn→∞ cn = 0, we see that the limit of the first part is 2. We may
find the limit of the second part directly, or using the main result of [5]:

lim
n→∞

(
n+ 1 + 2cn

n+ 2 + 2cn+1

)n

= exp

(
lim
n→∞

n
−1 + 2cn − 2cn+1

n+ 2 + 2cn+1

)
= e−1.

1



This completes the proof.

Note that taking bn = n in the theorem gives (1). As a general example, the theorem
applies to any sequence bn = n+ f(n), where f(n) → 0. For example, bn = n+ 1√

n
.
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