THE GOLDEN SUPERCIRCLE

In the familiar normed space ℓ_{p}, the distance from (x, y) to the origin is defined as $\left(|x|^{p}+|y|^{p}\right)^{1 / p}$. Taking all such points with distance 1 , we get something called a supercircle. These shapes, between squares and circles, have found many uses (see [2]) in design of buildings, fonts, roads, and app icons.

Each supercircle has a circumference (total arc length), which we can divide by its diameter to get π_{p}, the version of π for ℓ_{p}. We know some things about π_{p} (see [1] and the references therein) - it decreases from $\pi_{1}=4$ to its minimum $\pi_{2} \approx 3.14159$ (the usual π), and then increases to $\pi_{\infty}=4$. Since $\pi_{x}-x$ changes sign in $(2, \infty)$, by the intermediate value theorem there is some golden value $G \in(2, \infty)$ with $\pi_{G}=G$. By monotonicity this value is unique; we find

$$
\pi_{G}=3.3052415857 \ldots
$$

This golden supercircle constant appears to be new, i.e. not expressible from other constants. The associated golden supercircle is pictured below.

References

[1] Keller, J. B. and Vakil, R. (2009). π_{p}, the Value of π in ℓ_{p}. Amer. Math. Monthly. 116 (10), 931-935.
[2] Supercircle. (2022). https://en.wikipedia.org/wiki/Superellipse\#History.

