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Abstract

A recent paper by R. Moniot investigates the problem of, given a
probability p

q
, finding a number of red and blue balls such that, when

drawing two balls without replacement, the probability of drawing dif-
ferent colored balls is p

q
. In this paper we deepen our understanding of

the case where p
q
> 1

2
by finding bounds of the number of solutions for a

given probability m
2m−1

with m ∈ N and characterize “families” of prob-
abilities that are guaranteed to have more than two solutions. We also
estimate the number of achievable probabilities in the ranges

[
m

2m−1
, 1
]

and
(

m+1
2m+1

, m
2m−1

)
. Finally, we show that the “recycling recurrence” only

exists for x1 = n2 − n, y1 = n2, and y2 = n2 + n for n ∈ N.

1 Introduction
Drawing balls from urns is of great interest (see [3], [6], [7], [8]). A Varsity
Math problem posed the question of finding a number of red and blue balls such
that, when drawing two balls without replacement, the probability of drawing
different colored balls is 1

2 ([5]). A recent paper by R. Moniot ([4]) investigates
generalizing that problem to an arbitrary probability. More specifically, it asks,
given a probability p

q , is there a combination of x red balls and y blue balls such
that the probability of drawing, without replacement, two different colored balls
is p

q ? The with replacement case was solved in [2]. [4] separated the probabilities
into two main cases: the “elliptical case”, for probabilities greater than 1

2 (as
solutions lie on ellipses) and the “hyperbolic case”, for probabilities less than
1
2 (as solutions lie on hyperbolas). In this paper, we work towards a deeper
understanding of the elliptical case of the odds inversion problem.

Given x red balls and y blue balls, we denote the probability of drawing
two different colored balls with P (x, y). We will make use of much of the same
background as in [4]. We must have x, y ∈ N. We have

P (x, y) =
2xy

(x+ y)(x+ y − 1)
. (1)
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We call (x, y) a solution of a probability p
q iff P (x, y) = p

q . A probability p
q is

called achievable iff there exist x, y ∈ N with P (x, y) = p
q .

We will assume that 0 ≤ x, 0 ≤ y, and x+ y ≥ 2. We will similarly assume
that x ≤ y, as (1) is symmetric in x and y. Because we are only dealing with
probabilities greater than 1

2 , we may safely assume that x ̸= 0. We denote
t = x+ y and v = y − x.

We will call a pair of solutions (x1, y1), (x2, y2) a recycling recurrence iff

x2 = y1, y2 =
y1(y1 − 1)

x1
. (2)

We will usually write such a pair as (x1, y1), (y1, y2). These pairs are interesting
because the term y1 is ”recycled” and P (x1, y1) = P (y1, y2).

We use the following property to motivate our next definition:

Lemma 1.1 ([4]). For m ∈ Z with m ≥ 2, P (m− 1,m) = P (m,m) = m
2m−1 .

Proof. Evaluating (1) with (m− 1,m), we have

P (m− 1,m) =
2(m− 1)m

(2m− 1)(2m− 2)
=

m

2m− 1
.

Now evaluating (1) with (m,m), we have

P (m,m) =
2m2

(2m)(2m− 1)
=

m

2m− 1
.

Because we are guaranteed probabilities of the form m
2m−1 for some m ∈ N,

investigating properties of these solutions is a natural way to study the elliptical
case. We will call probabilities of the form m

2m−1 for m ∈ N “regular” and other
probabilities “irregular”. Note that we can write irregular probabilities as m

2m−1
for m ∈ Q with m > 1. Also note that for m1 < m2, m1

2m1−1 > m2

2m2−1 . We
will use “balanced” to refer to solutions of the form (m− 1,m) and (m,m) and
“imbalanced” to refer to other solutions. Because we are guaranteed balanced
solutions, we are primarily interested in imbalanced solutions, for both regular
and irregular probabilities.

There is a recycling recurrence of the form (m−1,m), (m,m) for probability
m

2m−1 ; as we already completely understand these, when dealing with recycling
recurrences we will assume they are between imbalanced solutions. We will find
in section 2 that recycling recurrences between imbalanced solutions only exist
for probabilities of the form n2

2n2−1 for some n ∈ N with n > 1.
We now show an important theorem that we will reference several times:

Theorem 1.2. For 0 < x ≤ y − 1, ∂P (x,y)
∂x is strictly positive and ∂P (x,y)

∂y is
strictly negative.

2



Proof. Examine the partial derivatives of P (x, y). We have

∂P (x, y)

∂x
=

2y(y2 − y − x2)

(x+ y − 1)2(x+ y)2
.

Because x ≤ y − 1, x2 < y(y − 1) = y2 − y, and so y2 − y − x2 > 0. All other
terms in the partial derivative are positive, so the partial derivative with respect
to x is strictly positive.

Similarly, we have

∂P (x, y)

∂y
=

2x(x2 − x− y2)

(x+ y − 1)2(x+ y)2
.

We know that x2 < y2, so x2 − x− y2 < 0, meaning the partial derivative with
respect to y is strictly negative.

Finally, we will show an important fact for probabilities greater than 1
2 .

Theorem 1.3 ([4]). Let x, y ∈ N. Suppose that P (x, y) ≥ m
2m−1 for some

m ∈ Z. Then y ≤ m.

Proof. Suppose that P (x, y) ≥ m
2m−1 . By Theorem 1.2, P (x, y) ≤ P (y− 1, y) =

y
2y−1 . Because f(m) = m

2m−1 is a decreasing function, we must have y ≤ m.

Corollary 1.3.1. Let x, y ∈ N. Suppose that P (x, y) ≥ m
2m−1 for some m ∈ Q.

Then y ≤ ⌈m⌉.

Proof. Again, note that the function f(m) = m
2m−1 is strictly decreasing. Be-

cause ⌈m⌉ ≥ m, we have ⌈m⌉
2⌈m⌉−1 < m

2m−1 . By 1.3, if P (x, y) > ⌈m⌉
2⌈m⌉−1 , then

y ≤ ⌈m⌉. Combining these facts, if P (x, y) > m
2m−1 , then y ≤ ⌈m⌉.

This theorem allows us to enumerate all solutions for probabilities greater
than 1

2 . For example, probability 2
3 = 2

2(2)−1 has two solutions, (1, 2) and
(2, 2). Probability 1 = 1

2(1)−1 has only one solution, (1, 1), making m = 1 the
sole integer m value with only one solution (as (m − 1,m) = (0, 1) breaks our
assumption that x ̸= 0). We will revisit this property in greater detail in Section
4.

We will show that the only recycling recurrences not of the form (m −
1,m), (m,m) are of the form (n2 − n, n2), (n2, n2 + n) for some n ∈ N. We
will then show upper and lower bounds for the number of solutions for regular
probabilities as well as characterizing several “families” of regular probabilities
in which we are guaranteed imbalanced solutions. Finally, we will investigate
the distribution of achievable probabilities in the elliptical case by finding es-
timates for the number of probabilities in

[
m

2m−1 , 1
]

and
(

m+1
2m+1 ,

m
2m−1

)
. For

example, we will show that there are O(m
3
2 ) probabilities greater than or equal

to a regular probability m
2m−1 .
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2 Recycling Recurrence
The recycling recurrence was of importance in the study of the odds inversion
problem. We will now work towards a complete characterization of the recycling
recurrence for probabilities greater than 1

2 .
Theorem 2.1 ([4]). There is exactly one recycling recurrence between imbal-
anced solutions when m = 2n2 with n ∈ N and n ≥ 2 and none otherwise.

In order to prove this theorem, we need the following results:
Lemma 2.2. Suppose that two imbalanced solutions (x1, y1), (y1, y2) have prob-
abilities greater than 1

2 . These solutions form a recycling recurrence iff x1 =
n2 − n, y1 = n2, and y2 = n2 + n for some n ∈ N with n ≥ 2.
Proof. ( =⇒ ) Suppose that (x1, y1) and (x2, y2) satisfy the recycling recurrence.
We then know that

y2 =
y21 − y1

x1
=⇒

x1y2 = y21 − y1.

Hence x1y2 = y1(y1 − 1). Because we are assuming (x1, y1) and (x2, y2) are
imbalanced, we know that x1 ≠ y1 − 1 and x1 ̸= y1. Thus, writing y1 = a1a2
and y1 − 1 = b1b2 for a1, b1, a2, b2 ∈ N, we have x1 = a1b1 and y2 = a2b2 or
vice versa. We aim to show that a1 = a2. Essentially, we will bound |a2 − b1|
and |b2 − a1|, thereby reducing the problem to a finite number of cases. We
can then check those cases to see that a1 = a2. WLOG, we may assume that
a1 ≤ a2. Then let x1 equal the smaller of a1b1 and a2b2, and y2 the larger.
We immediately see that a1 ̸= b2 and a2 ̸= b1, or else we would violate our
assumption that (x1, y1) and (x2, y2) are imbalanced.

We will first show that |b2 − a1| = 1. For any (x, y) with probability greater
than 1

2 , we have

t2 − v2

2t(t− 1)
>

1

2
=⇒

t2 − v2 > t2 − t =⇒
v2 < t. (3)

If a2b2 = x1, then the first solution is (a2b2, a1a2). If, on the other hand,
a2b2 = y2, then the second solution is (a1a2, a2b2). The t values for these two
solutions are the same, and the v values are additive inverses. Because inequality
(3) involves v2, the inequality is the same in either case. Substituting the t and
v values into (3) gives

(a2b2 − a1a2)
2 < a2b2 + a1a2 =⇒

a2(b2 − a1)
2 < b2 + a1 =⇒

a2 <
b2 + a1

(b2 − a1)2
. (4)
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We also have a1 ≤ a2, so

a1 <
b2 + a1

(b2 − a1)2
=⇒

a1((b2 − a1)
2 − 1) < b2. (5)

Let k = b2 − a1. Then

a1(k
2 − 1) < b2 = a1 + k =⇒

a1(k
2 − 2) < k.

Suppose by way of contradiction that |k| > 2. Then k2 > 4, so k2 − 2 > 2 > 0,
and we have a1 < k

k2−2 . We can see that k > 0, or else a1 < 0. We now see
that k2 > 2k > k + 2, so k2 − 2 > k. Hence k

k2−2 is strictly less than 1. But
this is impossible, since a1 is a positive integer. As such, −2 ≤ b2 − a1 ≤ 2.

Now suppose k = 2. Then 3a1 = a1(k
2 − 1) < b2 = 2 + a1, meaning a1 < 1,

which is impossible. Similarly, if b2 − a1 = −2, then a1 < −1, which is also
impossible. Hence −2 < b2 − a1 < 2. But b2 − a1 is a nonzero integer, so it
must equal either 1 or -1.

We will now show that |a2 − b1| = 1. By the construction of a1, a2, b1, b2,
either (x1, y1) = (a2b2, a1a2) or (y1, y2) = (a1a2, a2b2). Since a1a2 = y1 and
b1b2 = y1 − 1, a1a2 = b1b2 + 1. Applying a similar argument as to how we last
calculated v and t, we can substitute to see that v2 = (a2b2 − b1b2 − 1)2 and
t = a2b2 + b1b2 + 1. Applying (3) to these new values gives

(a2b2 − b1b2 − 1)2 < a2b2 + b1b2 + 1 =⇒
(a2b2 − b1b2)

2 − 2a2b2 − 2b1b2 < a2b2 + b1b2 =⇒
b22(a2 − b1)

2 < 3a2b2 − b1b2 =⇒
b2(a2 − b1)

2 < 3a2 − b1 =⇒

b2 <
3a2 − b1
(a2 − b1)2

. (6)

We have shown that (b2 − a1)
2 = 1. Substituting that into (4) gives

a2 < b2 + a1 =⇒
a2 − b2 < a1 =⇒

a1a2 > a22 − a2b2

Recall that a1a2 = b1b2 + 1:

b1b2 + 1 > a22 − a2b2 =⇒
b1b2 + a2b2 > a22 − 1 =⇒
(b1 + a2)b2 > a22 − 1 =⇒

b2 >
a22 − 1

b1 + a2
. (7)
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Combining (7) and (6) gives

a22 − 1

b1 + a2
<

3a2 − b1
(a2 − b1)2

=⇒

(a22 − 1)(a2 − b1)
2 < (3a2 − b1)(a2 + b1) =⇒
a22 − 4− 2a2b1 + b21 < 0 =⇒

(b1 − a2)
2 < 4 =⇒

|b1 − a2| < 2.

Since a2 ≠ b1, b1 − a2 must also be either 1 or -1.
We now know that |b1 − a2| = 1 = |b2 − a1|. If b1 − a2 = 1 = b2 − a1, then

we have b1 = a2 + 1 and b2 = a1 + 1. Then y1 − 1 = b1b2 = (a1 + 1)(a2 + 1) =
y1 + a1 + a2 + 1 > y1, which is a contradiction. If b1 − a2 = −1 = b2 − a1, then
b1 = a2 − 1 and b2 = a1 − 1. Then y1 − 1 = (a1 − 1)(a2 − 1) = y1 − a1 − a2 +1.
We thus have 2 = a1 + a2, so a1 = a2 = 1. This implies that y1 = 1, but there
are no recycling recurrences with y1 = 1, so we have a contradiction. We now
know that one of b1 − a2 and b2 − a1 equals 1 and the other equals −1. Assume
that b2 = a1 + 1 and b1 = a2 − 1. Then

a1a2 − 1 = y1 − 1 = (a1 + 1)(a2 − 1) = a1a2 + a2 − a1 − 1,

so 0 = a2 − a1, or a1 = a2. If b2 = a1 − 1 and b1 = a2 + 1, then we get
y1 − 1 = y1 − a2 + a1 − 1, so still a1 = a2. Now that x1 = b1a1 and y2 = b2a1,
we can see that b1 < a1 < b2. Thus, b1 + 1 = a1 = a2 = b2 − 1. Some simple
algebra will now show that x1 = n2 − n, y1 = n2, and y2 = n2 + n for some
n ∈ N (particularly n = a1). Note, however, that n ̸= 1 or else x1 = 0, which
contradicts our assumption that x ̸= 0.

( ⇐= ) Suppose that x1 = n2 −n, y1 = n2, and y2 = n2 +n. Simple algebra
will verify that (x1, y1), (y1, y2) satisfies the recycling recurrence.

There are many probabilities in the hyperbolic case, P (x, y) < 1
2 , which

have three solutions of the form (x1, y1), (y1, y2), (y2, y3), i.e. where the second
term of one recycling recurrence is also the first term of a different recycling
recurrence. We will now show that these “recycling triples” are entirely absent
in the elliptical case.

Corollary 2.2.1. There are no recycling triples.

Proof. Applying Lemma 2.2, we see that if (x1, y1), (x2, y2) is a recycling recur-
rence, we must have x1 = n2 − n, y1 = n2, and y2 = n2 + n = n(n + 1). We
can see that ∄z ∈ N | y2 = z2. Applying Lemma 2.2 again, we cannot have a
recycling pair (x2, y2), (x3, y3). Thus, there are no recycling triples.

Lemma 2.3. (x1, y1) and (x2, y2) are imbalanced solutions that satisfy the
recycling recurrence giving probability m

2m−1 iff m = 2n2, y1 = n2, and x1 =

n2 − n for some n ∈ N with n ≥ 2.
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Proof. ( =⇒ ) Suppose that (x1, y1) and (x2, y2) satisfy the recycling recurrence
with probability m

2m−1 . Because (x1, y1) and (x2, y2) satisfy the recycling recur-
rence, we can apply Lemma 2.2 to see that x1 = n2 − n and y1 = n2 for some
n ∈ N with n ≥ 2. We now substitute:

2xy

(x+ y)(x+ y − 1)
=

2(n2 − n)(n2)

(n2 − n+ n2 − 1)(n2 − n+ n2)
=

2(n4 − n3)

(2n2 − n)(2n2 − n− 1)
=

2(n4 − n3)

4n4 − 4n3 − n2 + n
=

2n2(n− 1)

(n− 1)(2n− 1)(2n+ 1)
=

2n2

(2n− 1)(2n+ 1)
=

2n2

4n2 − 1
=

m

2m− 1
.

We can see that m = 2n2 with n ≥ 2, as desired.
( ⇐= ) Suppose that m = 2n2, y1 = n2, and x1 = n2 − n for some n ∈ N

and n ≥ 2. Then (n2, n2 + n) satisfies the recycling recurrence.

Note that these solutions occur at y1 = m
2 —from a geometric perspective,

they occur near the center of the ellipse for probability m
2m−1 . We are now ready

to prove Theorem 2.1.

Proof. (there is a RR when m = 2n2): Apply Lemma 2.3.
(there is exactly one RR when m = 2n2): Apply Corollary 2.2.1 to see

that there are no recycling triples. Applying Lemma 2.3, we see that there is
a recycling recurrence iff y = m

2 , implying that there aren’t distinct pairs of
values satisfying the RR.

(the RR doesn’t happen otherwise): Apply Lemma 2.3.

Combined with our knowledge of recycling recurrences of the form (m −
1,m), (m,m), Theorem 2.1 provides a complete characterization of the recycling
recurrence for probabilities greater than 1

2 .

3 Solutions for Regular Probabilities
We will now explore solutions for regular probabilities; in particular, we will
determine how many solutions exist for these probabilities and characterize the
imbalanced solutions for these probabilities.
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3.1 Upper Bound on Number of Solutions
Let n ∈ N with prime factorization n = pk1

1 pk2
2 . . . pkm

m . Recall that the prime
omega function is defined ω(n) = m. We have the following conjecture for an
upper bound on the number of solutions for P (x, y) = m

2m−1 .

Conjecture 1. There are at most 2k solutions giving probability m
2m−1 , where

k = ω(2m− 1).

This conjecture is true for m ≤ 3000. Additionally, we have a partial proof
of the conjecture. First, we need two results, which we will also use in Section
4. We will first introduce the following lemma:

Lemma 3.1. For m > y > 1, P (x, y) = m
2m−1 iff

x =
m− 2y + 2my −m

√
1 + 8y + 4y2

m2 − 4y(1+2y)
m

2m
.

Proof. ( ⇐= ) Suppose that (x, y) is a solution to m
2m−1 i.e.

2xy

(x+ y)(x+ y − 1)
=

m

2m− 1
=⇒

(2xy)(2m− 1) = m((x+ y)(x+ y − 1)) =⇒
−mx2 + 2mxy +mx− 2xy −my2 +my = 0 =⇒
−mx2 + (2my +m− 2y)x− (y − 1)my = 0 =⇒

x =
(2my +m− 2y)±

√
(2my +m− 2y)2 − 4m2y(y − 1)

2m
=⇒

x =
m− 2y + 2my ±m

√
1 + 8y + 4y2

m2 − 4y(1+2y)
m

2m
.

One can verify that, for y < m,

y <
m− 2y + 2my +m

√
1 + 8y + 4y2

m2 − 4y(1+2y)
m

2m
.

Because we are assuming x ≤ y, we can replace the ± with −. Finally,

x =
m− 2y + 2my −m

√
1 + 8y + 4y2

m2 − 4y(1+2y)
m

2m
.

( =⇒ ) Let

x =
m− 2y + 2my −m

√
1 + 8y + 4y2

m2 − 4y(1+2y)
m

2m
.
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We will now show that P (x, y) = m
2m−1 . We have

2xy =
y(m− 2y + 2my −m

√
1 + 8y + 4y2

m2 − 4y(1+2y)
m )

m

x+ y =
m− 2y + 4my −m

√
1 + 8y + 4y2

m2 − 4y(1+2y)
m

2m

x+ y − 1 =
−m− 2y + 4my −m

√
1 + 8y + 4y2

m2 − 4y(1+2y)
m

2m
.

Thus,

(x+ y)(x+ y − 1) =
y(2m− 1)(2my +m− 2y −m)

√
1 + 4(2m−1)y(m−y)

m2

m2
.

And finally,
2xy

(x+ y)(x+ y − 1)
=

m

2m− 1
.

Let

x̃(m, y) =
m− 2y + 2my −m

√
1 + 8y + 4y2

m2 − 4y(1+2y)
m

2m
. (8)

We have the following corollary:

Corollary 3.1.1. For y > 1, P (x, y) > m
2m−1 iff

x ≥ x̃(m, y).

Proof. By Theorem 1.2, ∂P (x,y)
∂x is strictly positive. We can combine this fact

with Lemma 3.1 to see that Corollary 3.1.1 is true for y ̸= m. When y = m,
one can verify that x̃(m, y) = m− 1 and

m− 2y + 2my +m
√
1 + 8y + 4y2

m2 − 4y(1+2y)
m

2m
= m.

By Lemma 1.1, both (m − 1,m) and (m,m) are solutions of m
2m−1 for m ̸= 1.

Because m > m − 1, we must still have x ≥ m − 1. Thus, the theorem is also
true for y = m.

Now, let
z(y,m) =

√
m2 + 8m2y + 4y2 − 4ym(1 + 2y). (9)

In order to move towards an upper bound on the number of solutions, we will
establish the following condition.
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Lemma 3.2. For a given y,m ∈ N, if there exists an x ∈ N such that (x, y) is
a valid pair of balls with P (x, y) = m

2m−1 then z(y,m) ∈ Z.

Proof. Suppose that there exists an x ∈ N such P (x, y) = m
2m−1 . Then we know

that

x =
m− 2y + 2my − z(y,m)

2m
=⇒

2mx = m− 2y + 2my − z(y,m).

Because 2mx ∈ N, the RHS must be an integer as well. Because m, 2y, 2my ∈
Z, we must have z(y,m) ∈ Z as well.

We can now provide a partial proof of Conjecture 1.

Partial Proof. Consider the necessary condition z(y,m) ∈ N.√
m2 + 8m2y + 4y2 − 4ym(1 + 2y) = z(y,m) =⇒
m2 − 4ym+ 8m2y + 4y2 − 8my2 = z(y,m)2 =⇒

2m3 − 8m2y −m2 + 8my2 + 4my − 4y2 = 2m3 − z(y,m)2 =⇒

y2 −my +
m2

4
=

2m3 − z(y,m)2

4(2m− 1)
=⇒

(y − m

2
) =

√
2m3 − z(y,m)2

4(2m− 1)
=⇒

2y =

√
2m3 − z(y,m)2

2m− 1
+m.

Because 2y ∈ Z, we must have
√

2m3−z(y,m)2

2m−1 +m ∈ Z. Thus, we must have√
2m3−z(y,m)2

2m−1 ∈ Z, and so necessarily 2m3−z(y,m)2

2m−1 ∈ Z. As such, we must have
z(y,m)2 ≡2m−1 2m3, which means that

z(y,m)2 ≡2m−1 2m3 −m2(2m− 1) ≡2m−1 m2.

To find values of z(y,m), we would apply the Chinese Remainder Theorem. For
more information on this process, see [1]. There are at most 2k ways to do this,
where k = ω(2m − 1). Now suppose that each value of z(y,m) corresponds
to at most two solutions (x, y). For each of y = 0 and y = m, there are
two solutions giving m

2m−1 . Thus, the number of solutions found this way is
2(2k) + 2 = 2k+1 + 2. Remove the “trivial solutions” (0, 0), (0, 1), and (1, 0)
(see [4]) and the solution (m,m) to get 2k+1 − 2 solutions. Half of the solutions
counted by this value have x < y and the remaining solutions have y < x.
Imposing the condition that x ≤ y, we have 2k − 1 solutions. Add back the
solution (m,m) to find that there is a maximum of 2k solutions.
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3.2 Conditions for the Existence of Imbalanced Solutions
We will now show a method of verifying whether a regular probability has
imbalanced solutions. In doing so, it will be useful to represent solutions using
the auxiliary variables t and v. Given a solution (x, y) to a probability, we let
[t, v] represent the pair of integers t and v such that t = x+ y and v = y − x.

Lemma 3.3. The regular probability m
2m−1 has an imbalanced solution [t, v] iff

v2 = t(2m−t)
2m−1 .

Proof. Suppose that the regular probability m
2m−1 has an imbalanced solution

determined by [t, v]. We can then substitute the expressions for t and v into
equation (1) to get

m

2m− 1
=

t2 − v2

2t(t− 1)
⇐⇒

2mt(t− 1) = (t2 − v2)(2m− 1) ⇐⇒
2mt2 − 2mt = 2mt2 − t2 − (2m− 1)v2 ⇐⇒
(2m− 1)v2 = 2mt− t2 ⇐⇒

v2 =
t(2m− t)

2m− 1
. (10)

Hence the solution [t, v] satisfies equation (1) iff v2 = t(2m−t)
2m−1 .

Note that, by the symmetry of the ellipse, if (x, y) is a solution giving
P (x, y) = m

2m−1 , then (m − y,m − x) is also such a solution. In terms of t
and v, the equivalent statement is that if [t, v] is a solution to a given regular
probability, then [2m− t, v] is also such a solution, which can be readily verified
using the above lemma.

Theorem 3.4. If 2m − 1 is a prime power, then the regular probability m
2m−1

has no imbalanced solutions.

Proof. Suppose that 2m − 1 = pn for some prime p and some natural number
n. By way of contradiction, suppose also that m

2m−1 has an imbalanced solution
[t, v]. Note that for all imbalanced solutions, t > 1 and 2m − t > 1, which in
turn implies that both t and 2m − t are both strictly less than 2m − 1 = pn.
Now by Lemma 3.3, t(2m−t)

2m−1 is an integer. It follows that p | t and p | 2m − t.
But then p | t+ (2m− t) = 2m, which contradicts p | 2m− 1. Hence m

2m−1 has
no imbalanced solutions.

As a corollary to the above theorem, we see that if m
2m−1 has imbalanced

solutions, we may write 2m− 1 = ab where a, b ∈ N \ {0, 1} and gcd(a, b) = 1.
Given a pair of natural numbers (a, b), we define a′ and b′ to be the inverse

of a (mod b) and the inverse of b (mod a) respectively. Note that in order for
the modular inverses to exist, we must have gcd(a, b) = 1. We will call (a′, b′)
the derived pair of (a, b). We note the following property of derived pairs:

11



Lemma 3.5. For a, b ∈ N with derived pair (a′, b′), aa′ + bb′ − 1 = ab.

Proof. By definition, aa′ ≡b 1. Let n be the least natural number such that
aa′ = bn + 1. Rearranging gives −bn = −aa′ + 1 ≡a 1. Now −n ≡a a − n, so
we also have b(a− n) ≡a 1. Since a− n < a, we have b′ = a− n or n = a− b′.
Substituting gives aa′ = b(a− b′) + 1 ⇒ aa′ + bb′ − 1 = ab.

Lemma 3.6. Let 2m−1 = ab, and let (a′, b′) be the derived pair of (a, b). Then
t(2m−t)
2m−1 = a′b′ if either t = aa′ or t = bb′.

Proof. We first note that 2m− 1 = ab = aa′ + bb′ − 1 by Lemma 3.5. WLOG,
assume that t = aa′. Note that a | t, and since a′ < b, t < 2m− 1 as required.
We now have 2m − 1 = t + bb′ − 1 or 2m − t = bb′. Finally, we see that
t(2m−t)
2m−1 = (aa′)(bb′)

ab = a′b′.

We are now ready to describe some integers m such that m
2m−1 has imbal-

anced solutions.

Theorem 3.7. A regular probability m
2m−1 has at least two imbalanced solutions

if there exist a, b ∈ N \ {0, 1} with derived pair (a′, b′) such that

• ab = 2m− 1

• gcd(a, b) = 1

• a′b′ is a perfect square greater than 1.

Proof. Suppose that for a regular probability m
2m−1 , there exist a and b which

satisfy the above conditions. Let t = aa′ or t = bb′, and let v =
√
a′b′. By

Lemma 3.6, we have t(2m−t)
2m−1 = a′b′ = v2. By Lemma 3.3, [aa′, a′b′] and [bb′, a′b′]

both determine solutions for the given regular probability. However, since x =
t−v
2 and y = t+v

2 , we must now show that our choices of t and v have the same
parity. As in Lemma 3.6, we may assume WLOG that t = aa′. We note that
since 2m − 1 is odd, both a and b must also be odd, and that the parity of v
matches the parity of v2 = a′b′. If a′ is even, then both t and v are even, and
we are done. If a′ is odd, then t is also odd. Suppose by way of contradiction
that b′ is even. Using the definition of b′, we now have bb′ = ak + 1, where k is
an odd integer in the interval [0, b). This implies

ak ≡b −1 =⇒
ab− ak = a(b− k) ≡b 1 =⇒

a′ = b− k,

where in the final step we use 0 ≤ b− k < b. But a′ is odd, while b− k is even,
which is a contradiction. Hence b′, and therefore v, must be odd.

Corollary 3.7.1. Let 2m − 1 = ab as in Lemma 3.6. Then the imbalanced
solutions for m

2m−1 given by t = aa′ and t = bb′ are distinct.

12



Proof. If t = aa′, then the corresponding (x, y) solution is (aa′−
√
a′b′

2 , aa′+
√
a′b′

2 ).
If instead t = bb′, then the (x, y) solution is ( bb

′−
√
a′b′

2 , bb′+
√
a′b′

2 ). Suppose that
these two solutions are the same. Then aa′−

√
a′b′

2 = bb′−
√
a′b′

2 , and aa′ = bb′.
Reducing this mod a gives 0 ≡a bb′. But bb′ ≡a 1. By contradiction, the two
(x, y) solutions given above are distinct.

Based on Theorem 3.7, we pose the following conjecture:

Conjecture 2. All solutions to a regular probability m
2m−1 , including the two

balanced solutions, correspond to a unique factorization ab of 2m − 1, with
a, b ∈ N \ {0} and gcd(a, b) = 1.

Note that Conjecture 2 implies Conjecture 1. Indeed, let pα1
1 pα2

2 · · · pαm
m be

the prime factorization of 2m−1. Because gcd(a, b) = 1, the number of possible
factorizations ab of 2m−1 corresponds to the number of ways to choose the pαi

i

that divide a, which is 2k. Then if each solution for m
2m−1 corresponds to only

one of the 2k possible factorizations, the maximum number of such solutions is
2k.

3.3 Solution Families for Regular Probabilities
We will now use Theorem 3.7 to find several families of imbalanced solutions.
The following result provides several conditions on a and b which guarantee that
a′b′ is square.

Theorem 3.8. Let a, b ∈ N \ {0, 1} have derived pair (a′, b′). Then a′b′ is a
perfect square greater than one if at least one of the following conditions is met:

1. b = a+ 2

2. b = a(a− 1)− 1

3. a = 6n+ 1 and b = 2a+ 3 for some n ∈ N with n ≥ 1 or

4. b = (an± 1)2 − an2 for some n ∈ N with n ≥ 1.

Proof. Let a, b ∈ N \ {0, 1} with derived pair (a′, b′).

1. Suppose that b = a + 2. Then a ≡b a − b = −2, and therefore for any
n ∈ N, an ≡b −2n. Now let n = a+1

2 . Then

an ≡b −2n = −a− 1 = (b− a)− 1− b = 1− b ≡b 1.

So n = a′. We now notice that b ≡a b− a = 2, and that bn ≡a 2n for any
n ∈ N. As before, we let n = a+1

2 , and we have

bn ≡a 2n = a+ 1 = b− 1 = (b− a) + a− 1 = 1 + a ≡a 1.

So n = b′, and a′b′ = n2 is a perfect square greater than 1.

13



2. Now suppose that b = a(a−1)−1. Then since a(a−1) ≡b 1 and a−1 < b,
a− 1 = a′. Now

b(a− 1) = ab− b = ab− a(a− 1) + 1 ≡a 1.

Clearly a − 1 < a, so a − 1 = b′, and a′b′ = (a − 1)2 is a perfect square
greater than 1.

3. Suppose now that a = 6n+ 1 and b = 2a+ 3 for some n ∈ N with n ≥ 1.
Then b = 12n+ 5. Now

a(4n+1) = (6n+1)(4n+1) = 24n2+10n+1 = 2n(12n+5)+1 = 2nb+1,

which is congruent to 1 (mod b). Since 4n+ 1 < b, a′ = 4n+ 1. We also
have

b(4n+1) = (2a+3)(4n+1) = 8an+12n+2a+3 = a(8n+2)+2(6n+1)+1.

Since a = 6n+1, taking this mod a gives 1. Certainly 4n+1 < a = 6n+1,
so b′ = 4n+ 1, and a′b′ = (4n+ 1)2 is a perfect square greater than 1.

4. Finally, suppose that b = (an ± 1)2 − an2 for some n ∈ N with n ≥ 1.
Then

b = a2n2 ± 2an+ 1− an2 = an2(a− 1)± 2an+ 1.

So b ≡a 1, and b′ = 1. Now let c =
(
(a− 1)n± 1

)2. Note that c < b, since

c = n2(a− 1)2 ± 2n(a− 1) + 1 <

a2n2 ± 2an+ 1− an2 =

an2(a− 1)± 2an+ 1 = b.

We also have

ac = a
(
(a− 1)2n2 ± 2(a− 1)n+ 1

)
= a(a− 1)2n2 ± 2a(a− 1)n+ a

= (a− 1)
(
a(a− 1)n2 ± 2an+ 1

)
+ 1 = (a− 1)b+ 1 ≡b 1.

Hence c = a′, and a′b′ =
(
(a− 1)n± 1

)2 is a perfect square greater than
1.

In conjunction with Theorem 3.7, the conditions in the above theorem each
produce infinitely many solutions for various regular probabilities. We will refer
to the sets of solutions produced by each of the conditions as “families” of
solutions. We say that solutions produced by the first condition in Theorem 3.8
belong to family 1, and so on.

Remark. The solutions produced by family 1 satisfy the recycling recurrence.
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Proof. Suppose that a regular probability m
2m−1 has a solution in family 1 given

by [t, v]. We see that there exists an n ∈ N \ {0, 1} such that v = n and
t = 2n2 ± n. If t = 2n2 + n, then (x, y) = (n2, n2 + n). If t = 2n2 − n, then
(x, y) = (n2 − n, n2). By Theorem 2.1, these are exactly the (x, y) solutions
which satisfy the recycling recurrence in the elliptical case.

We now turn our attention to the intersections between these solution fam-
ilies; that is, imbalanced solutions that are produced by more than one of the
families. For a given regular probability, there may be multiple distinct imbal-
anced solutions which each belong to different families, or there may be indi-
vidual imbalanced solutions which belong to multiple families simultaneously.
It is simpler to analyze the latter case, because we can equate the expressions
relating a and b for the two families we are interested in.

For families 1 and 2, we have a + 2 = a(a − 1) − 1. Solving for a gives
a = 3. Hence b = 5, and we arrive at the solutions (2, 4), (4, 6) when m = 8.
For families 1 and 3, we have a+2 = 2a+3. Solving for a gives a = −1, which
does not give a solution because a must be greater than 1. For families 2 and
3, the relevant equation is a(a− 1)− 1 = 2a+ 3. Solving gives a = 4, which is
even and so not a possible factor of the odd number 2m− 1.

Family 4 always gives b′ = 1, while the other three have a′ = b′. If a
solution with b′ = 1 were to coincide with a solution where a′ = b′, then a′, and
therefore v, would also be 1. This would produce a balanced solution, which we
may disregard. So we see that an imbalanced solution for Family 4 can never
belong to any of the other families.

Although (2, 4) and (4, 6) are the only two individual solutions that belong to
more than one of the families, there are additional regular probabilities which
have solutions belonging to multiple families. For example, the probability
corresponding to m = 1008 has two solutions belonging to family 2, and two
more solutions belonging to family 3. In addition, the probability corresponding
to m = 1190 has two solutions belonging to family 4 with n = 1, and two more
solutions also belonging to family 4, but with n = 11.

A computer search was conducted to find solutions for probabilities of the
form m

2m−1 for all integers m ≤ 3000. A separate search identified those solutions
belonging to each of the above families. As shown in Figure 1, Family 4 covers
the most solutions. There are 624 imbalanced solutions in this range which do
not belong to any family, i.e. are not covered by the families.

4 Estimations of the Density of Achievable Prob-
abilities

Finally, we will find estimations of the number of solutions for probabilities
in the ranges

[
m

2m−1 , 1
]

and
(

m+1
2m+1 ,

m
2m−1

)
in order to better understand the

density of solutions for probabilities in the range ( 12 , 1].
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Figure 1: Number of solutions covered by each family.

4.1 Number of Solutions for Probabilities Greater Than
or Equal to m

2m−1

We can leverage Corollary 3.1.1 to find bounds on the number of solutions for
probabilities in various ranges. Let

S(m) = 1 +

m∑
i=2

(i+ 1− ⌈x̃(m, i)⌉) (11)

where x̃ was defined in (8).

Lemma 4.1. There are S(m) solutions for probabilities greater than or equal
to m

2m−1 .

Proof. By Theorem 1.3, we must have x ≤ y ≤ m. We know that if y = 1 then
there is only one x value (x = 1) such that (x, y) is a valid pair of balls. For any
other fixed y, x̃(m, y) is the value of x such that P (x, y) = m

2m−1 . By Corollary
3.1.1, if x ≥ x̃(m, y), then P (x, y) ≥ m

2m−1 . The least integer value in this range
is ⌈x̃(m, y)⌉, while the greatest is m. Summing over all values of y, we have
S(m) solutions for probabilities greater than or equal to m

2m−1 .

We will now find an estimate of how many values are in this range. First,
we need an additional lemma:

Lemma 4.2. For real numbers y,m, we have

∫ β

α

m
√
1 + 8y + 4y2

m2 − 4y(1+2y)
m

2m
dy = m

√
2m− 1(̃i(β,m)− ĩ(α,m)),
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where

ĩ(c,m) =
1

8

(c− 1)

√
m

2m− 1
− (1− c)2 − m

2m− 1

tan−1

 1− c√
m

2m−1 − (1− c)2


Proof. We have

∫ β

α

m
√
1 + 8y + 4y2

m2 − 4y(1+2y)
m

2m
dy =

∫ β

α

1

2

√
1 + 8y + 4(

y

m
)2 − 4

y

m
− 8m(

y

m
)2dy.

Let t = y
m . Then mdt = dy. We have∫ β

2

α
2

m

2

√
1 + 8mt+ 4t2 − 4t− 8mt2dt =

∫ β
2

α
2

m
√
2m− 1

√
1

4(2m− 1)
+ t− t2dt =

m
√
2m− 1

∫ β
2

α
2

√
m

4(2m− 1)
− (t− 1

2
)2dt.

The antiderivative of
√

m
4(2m−1) − (t− 1

2 )
2 is

1

8

(2t− 1)

√
m

2m− 1
− (1− 2t)2 − m

2m− 1

tan−1

 1− 2t√
m

2m−1 − (1− 2t)2

+C.

Evaluating the definite integral, we have

1

8

(β − 1)

√
m

2m− 1
− (1− β)2 − m

2m− 1

tan−1

 1− β√
m

2m−1 − (1− β)2

−

1

8

(α− 1)

√
m

2m− 1
− (1− α)2 − m

2m− 1

tan−1

 1− α√
m

2m−1 − (1− α)2

 =

ĩ(β,m)− ĩ(α,m).

Multiplying by m
√
2m− 1, we find that the integral equals

m
√
2m− 1(̃i(β,m)− ĩ(α,m)),

as desired.

Theorem 4.3. There are at most

1 +m− 1

m
+m

√
2m− 1(̃i(⌊m

2
⌋+ 1,m)− ĩ(2,m) + ĩ(m,m)− ĩ(⌊m

2
⌋,m))

solutions for probabilities greater than or equal to m
2m−1 for m ∈ N.
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Proof. First, because −⌈x⌉ ≤ −x, we have

1 +

m∑
i=2

(i+ 1− ⌈x̃(m, y)⌉) ≤ 1 +

m∑
i=2

(i+ 1− x̃(m, y)) . (12)

We will now simplify this expression. One can verify that i + 1 − m−2i+2mi
2m =

m+2y
2m . Thus, our expression is

m∑
i=2

m+ 2i

2m
+

m
√

1 + 8i+ 4i2

m2 − 4i(1+2i)
m

2m
.

Note that
∑m

i=2
m+2i
2m = m − 1

m . We wish to bound the rest of the sum with

an integral. Because m
√

1+8i+ 4i2

m2 − 4i(1+2i)
m

2m defines a downwards facing parabola
centered at m

2 , we must split the sum into two parts–one from 2 to ⌊m
2 ⌋, which

is monotically increasing, and one from ⌊m
2 ⌋ + 1 to m, which is monotically

decreasing. We have

m∑
i=2

m
√

1 + 8i+ 4i2

m2 − 4i(1+2i)
m

2m
=

⌊m
2 ⌋∑

i=2

m
√
1 + 8i+ 4i2

m2 − 4i(1+2i)
m

2m
+

m∑
⌊m

2 ⌋+1

m
√
1 + 8i+ 4i2

m2 − 4i(1+2i)
m

2m
≤

∫ ⌊m
2 ⌋+1

i=2

m
√
1 + 8i+ 4i2

m2 − 4i(1+2i)
m

2m
+

∫ m

⌊m
2 ⌋

m
√

1 + 8i+ 4i2

m2 − 4i(1+2i)
m

2m
=

m
√
2m− 1(̃i(⌊m

2
⌋+ 1,m)− ĩ(2,m) + ĩ(m,m)− ĩ(⌊m

2
⌋,m))

where the last equality is by Lemma 4.2. Combining, we find an upper bound
of

1 +m− 1

m
+m

√
2m− 1(̃i(⌊m

2
⌋+ 1,m)− ĩ(2,m) + ĩ(m,m)− ĩ(⌊m

2
⌋,m)),

as desired.

Remark. The upper bound for the number of solutions for probabilities greater
than or equal to m

2m−1 is O(m
3
2 ).

Proof. Note that 1 +m − 1
m is O(m), so it is O(m

3
2 ). Since tan−1(x) is O(1)

asymptotically, ĩ(c,m) has the same growth rate as (c − 1)
√

m
2m−1 − (1− c)2.

Thus,

m
√
2m− 1(̃i(⌊m

2
⌋+ 1,m)− ĩ(2,m) + ĩ(m,m)− ĩ(⌊m

2
⌋,m))

is O(m
3
2 ). As such, the number of solutions is O(m

3
2 ).
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Theorem 4.4. There is a lower bound of

1 +
m− 1

m
+m

√
2m− 1(̃i(⌊m

2
⌋,m)− ĩ(1,m) + ĩ(m+ 1,m)− ĩ(⌊m

2
+ 1⌋,m))

solutions for probabilities greater than or equal to m
2m−1 .

Proof. We note that, because −x− 1 < −⌈x⌉, we have

1 +

m∑
i=2

(i+ 1− ⌈x̃(m, y)⌉) ≥ 1 +

m∑
i=2

(i− x̃(m, y)) . (13)

Simplifying this expression, we have

1 +

m∑
i=2

m+ 2i

2m
− 1 +

√
1 + 8i+ 4i2

m2 − 4i(1+2i)
m

2

 .

We have
∑m

i=2
m+2i
2m − 1 = m−1

m . We will, again, bound the remaining terms by
replacing the sum with an integral. We have

m∑
i=2

m
√

1 + 8i+ 4i2

m2 − 4i(1+2i)
m

2m
=

⌊m
2 ⌋∑

i=2

m
√
1 + 8i+ 4i2

m2 − 4i(1+2i)
m

2m
+

m∑
⌊m

2 ⌋+1

m
√
1 + 8i+ 4i2

m2 − 4i(1+2i)
m

2m
≥

∫ ⌊m
2 ⌋

i=1

m
√
1 + 8i+ 4i2

m2 − 4i(1+2i)
m

2m
+

∫ m+1

⌊m
2 ⌋+1

m
√
1 + 8i+ 4i2

m2 − 4i(1+2i)
m

2m
=

m
√
2m− 1(̃i(⌊m

2
⌋,m)− ĩ(1,m) + ĩ(m+ 1,m)− ĩ(⌊m

2
+ 1⌋,m))

Combining, we have a lower bound of

1 +
m− 1

m
+m

√
2m− 1(̃i(⌊m

2
⌋,m)− ĩ(1,m) + ĩ(m+ 1,m)− ĩ(⌊m

2
+ 1⌋,m)),

as desired.

Remark. The lower bound for the number of solutions for probabilities greater
than or equal to m

2m−1 is O(m
3
2 ).

Proof. Note that 1 + m−1
m is O(1). Again, ĩ(c,m) has the same growth rate as

(c− 1)
√

m
2m−1 − (1− c)2. Thus,

m
√
2m− 1(̃i(⌊m

2
⌋,m)− ĩ(1,m) + ĩ(m+ 1,m)− ĩ(⌊m

2
+ 1⌋,m))

is O(m
3
2 ). As such, the number of solutions is O(m

3
2 ).
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4.2 Solutions for Probabilities Between m
2m−1

and m+1
2m+1

We will now approximate the number of solutions for probabilities between m
2m−1

(the probability associated with (m,m)) and m+1
2m+1 (the probability associated

with (m+1,m+1)). Unfortunately, we were unable to find appropriate formal
bounds on this quantity, but we can approximate it with our previous results:

Remark. Letting n = m+ 1, there are approximately

n− 1

n
+ n

√
2n− 1(̃i(⌊n

2
⌋+ 1, n)− ĩ(2, n) + ĩ(n, n)− ĩ(⌊n

2
⌋, n))−

m− 1

m
+m

√
2m− 1(̃i(⌊m

2
⌋+ 1,m)− ĩ(2,m) + ĩ(m,m)− ĩ(⌊m

2
⌋,m))

solutions for probabilities P (x, y) with m
2m−1 < P (x, y) < m+1

2m+1 .

Proof. We can approximate the amount of probabilities in the desired range by
taking an approximation of the amount of probabilities greater than or equal to
m+1
2m+1 and subtracting an approximation of the number of probabilities greater
than or equal to m

2m−1 . We do this with the upper bound found in Theorem
4.3.

Note that, because the above approximation is essentially the slope of a
function that was O(m

3
2 ), it is O(m

1
2 ).

Additionally, a search was conducted to find the number of probabilities be-
tween m

2m−1 and m+1
2m+1 . Fitting parabola to the first three calculated maxima

and to the first three minima results in the following two conjectures, respec-
tively: (see Figure 2):

Conjecture 3. The upper bound is
√
2m+ 2− 3, which is met infinitely often.

Conjecture 4. The lower bound is
√

m
2 + 1− 2.

The actual value of the number of probabilities coinciding with Conjecture 3
seem to have some relation with the families given in Theorem 3.8. For example,
observe that m = 2k2 − 1 iff 2m + 2 = (2k)2 and that m

2m−1 has a solution in
Family 1 iff m = 2k2 for k ≥ 2. As such,

√
2m+ 2 ∈ Z iff m+ 1 has a solution

in Family 1. It seems that the presence of this family increases the number of
probabilities between m

2m−1 and m+1
2m+1 , resulting in the true value meeting the

conjectured value.
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