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Abstract 

Graph theory was used to analyze a series of small pseudodendrimeric 

structures.  Descriptive indices were developed to characterize the 

pseudodendrimer graphs.  The relative proportion of these dendrimers in typical 

samples was estimated based on three growth models.  Weighted average 

values for the descriptive indices over typical aggregate samples were found to 

differ only slightly from values for perfect dendrimers. 

Introduction 

Dendritic polymers based upon AB2 subunits are ostensibly divided into the 

categories of dendrimers and hyperbranched polymers.  Dendrimers[1-6] are 

polymers that are perfectly symmetrical and perfectly branched, but typically 

require iterative syntheses based on protecting group chemistry or orthogonal 

functional group reactivities.  Hyperbranched polymers[7-13] contrast dendrimers 

with a highly random structure, imperfect branching, but a single-reaction 

synthesis.  The differences between hyperbranched polymers and dendrimers 

are usually described using the degree of branching formulae developed by 

Fréchet[14] and revised by Frey.[15]  In these formulae, the relative proportion of 
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terminal (repeat units bonded to one other monomer), linear (a repeat unit 

bonded to two other monomers) and dendritic (a repeat unit bonded to three 

other monomer) units is used to generate an index which is 0 for linear polymers, 

1 for perfect dendrimers, and normally 0.5 for random hyperbranched polymers. 

A third class of materials, pseudodendrimers, has been proposed as an 

intermediate class between hyperbranched polymers and dendrimers.  These 

materials were defined by Haag et al. as hyperbranched polymers without linear 

units;[16]  thus these polymers are comprised of only dendritic and terminal units.  

Similar to dendrimers, pseudodendrimers have degrees of branching of 1.  Unlike 

dendrimers, they are not perfectly symmetric, making pseudodendrimers isomers 

of dendrimers.  It should be noted that, despite the name, hyperbranched 

polymers are not as highly branched as dendrimers or pseudodendrimers. 

The first examples of pseudodendrimer synthesis were post-synthetic 

modification of hyperbranched polymers by Lach and Frey,[17] and later extended 

by Haag et al.[18]  The sizes and shapes of these pseudodendrimers are strongly 

influenced by those of the starting hyperbranched polymers.  Frey[19]   suggested 

a second method to synthesize pseudodendrimers by increasing the reactivity at 

branching points relative to other propagation. Hobson and Feast[20] have 

demonstrated the only current example of this process; they report the melt 

polymerization of ethanediamine mono-acrylamide hydrochloride leads to highly 

branched polymers.  A different approach to synthesizing highly branched 

polymers, reported by Maier et al.[21] uses a reversible single addition to an AB2 

monomer followed by an irreversible second addition.  
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The present work details a simple model for characterizing such 

pseudodendrimers based on graph theory, and determining the degree with 

which their structure will deviate from the structure of dendrimers by analysis of 

the graph representations of pseudodendrimers.  Specifically, since   

pseudodendrimers formed by enhancement of reactivity at branching points 

(graphically analogous to Frey's suggestion[19]) will always possess an A 

functional, the resulting pseudodendrimers will be compared to dendrons 

(subunits of dendrimers with a single A functional group at core and B functional 

groups on the periphery).  This characterization is important, as it is the basis for 

justifying the substitution of dendrimers with pseudodendrimers[22] in applications. 

Results and Discussion 

Description of Graph Representations of Pseudodendrimers.  In this context, 

a graph is a collection of vertices connected by edges.  The graphs presented 

herein are used to represent pseudodendrimers.  Specifically, repeat units are 

represented as vertices and connections between them as edges.  In this 

preliminary communication, we will exclude the possibility of cycles.  This 

simplification reduces the graphs to a simpler subset of diagrams known as 

trees.  An example of a graph and nomenclature of an imperfect G2-Dendron is 

shown in Figure 1. 
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Figure 1.  Graph representations of a pseudodendrimer   

The first representation corresponds to a chemically intuitive version of the 

graph, where unreacted functional groups are shown as capital letters, reacted 

functional groups are shown in lower case letter, similar to Voit’s convention,[23] 

and the vertices (represented as heavy dots) represent the repeat unit cores.  

In the second (simpler) representation, the repeat unit cores are specified and 

the functional group connections are implied.  Throughout this work, the 

functional groups will be connected A to B as the reader looks left to right.  

Additionally, the leftmost vertex (also called the root) will always possess an 

unreacted A functional group, and the rightmost vertices will possess two 

unreacted B functional groups (and are referred to as leaves or terminal units). 

The trees will be named by listing the number of vertices traversed between 

the leftmost vertex and each terminal (rightmost) vertex in order downwards.  

Permitting rotation about A-B bonds creates the potential for several 

nomenclatures to describe the same tree, analogous to chemical conformers.  

We treat all potential graphical conformers as equivalent and; choose the graph 

identification which is greatest under the lexicographic ordering.  Thus the graph 

in Figure 1 is named 221. 

Growth of Pseudodendrimer Graphs.  The method for pseudodendrimer 

growth based on enhancement of reactivity at branch points has been modeled 

kinetically by assigning relative rate constants for propagation at linear (kl) and 

terminal (kt) units.  It has been shown that monomers polymerized with high 

ratios of kl/kt will lead to polymers with high degrees of branching.[20]  For the 
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purposes of this modeling, we assume a very high (effectively infinite) kl, along 

with a small (effectively finite) kt.  The net result is that whenever a propagation 

occurs, two monomers must add to a terminal unit, analogous to divergent 

growth.  Alternatively, analogous to convergent growth, one monomer may add 

to the A functional group of the growing polymer, and a second monomer must 

add to the other B-functional group of what will be the new root.  One 

consequence of this simple model is that the root will always be a linear unit.  

However, knowing the identity of this repeat unit as the root, allows the critical 

distinction of the root's reactivity from other linear units formed by monomer 

addition.  By extension to the terminology for dendrimers, these fragments are 

pseudodendrons. 

The first nontrivial addition occurs when the 5-mer (221) adds two repeat 

units.  There are four possibilities for propagation: addition to either of the longest 

branches from the B side, addition to the shortest branch from the B side, or 

addition to the A side. Addition to the shortest branch B function leads to 2222, 

while other propagations lead to 3321.  These possibilities are shown in Figure 2. 
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Figure 2.  Possibilities for Growth of 221 

Using this growth paradigm, we find two pseudodendritic structures for the 7-

mer, three structures for the 9-mer, five structures for the 11-mer, eleven 

structures for the 13-mer, and twenty-three structures for the 15-mer.  Careful 

analysis all of the possible structures suggests that the ultimate distribution of the 

various 15-mers can be predicted.   

We can construct several probability distributions for these structures.  The 

simplest is the equimolar distribution which assumes all sites are equally reactive 

(and is subsequently referred to as the equal reactivity paradigm).  Two other, 

more complex, distributions are based on pseudo-geometric considerations 

described in later sections.  

221 
3321 

3321 

2331 = 3321 
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Characterization of Pseudodendrimer Graphs.  Since the root of the tree is 

readily identified as the repeat unit with an unreacted A functional group, the 

distance of any leaf to the root (as traversed by the unique shortest walk) may be 

determined.  Average leaf-to-root distances were then used to characterize the 

trees.  Relative standard deviations (RSD) on these distances were also 

determined.  The root-mean-squared difference (RMSD) of these averages from 

the perfectly dendritic structure was also calculated. 

An additional method based on graph theory will also be employed: distance 

of a leaf from the center of the graph.  The center of the graph is defined as the 

subgraph of vertices with minimum eccentricity (where the eccentricity of a vertex 

is defined as the distance to the farthest other vertex).  The center of a tree is 

readily determined by Jordan’s method[24] which says that for any given tree, 

deletion of the leaves results in a tree with the same center as the original tree.  

This leads to two possible cases, a center which is a vertex or a center which is 

an edge.  The average distance of the leaf to the center of the graph was then 

determined in the usual way.  In cases where an edge was the center, fractional 

measurements were employed, such that half of an edge-length was added to 

the distance.  The average leaf-to-center distance was then computed.  Relative 

standard deviations on these distances were also determined.  The root-mean-

squared difference of these averages from the perfectly dendritic structure was 

also calculated.  The summary data (Supplementary Table 1) allows 

determinations of the differences between pseudodendrimers and perfect 

dendrons. 
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Another growth paradigm may be employed which biases the reactivity of 

sites based on their distance from the center.  This is approximately analogous to 

accounting for steric hindrance.  Each individual leaf-to center distance is added 

to one to produce a modified leaf-to-center distance.  The individual probabilities 

are assigned by dividing the modified leaf-to-center distances by the sum of all 

modified leaf-to-center distances ( ( )∑ +
+

=
kd

kd
p

j

i
i ; referred to as the linear 

reactivity paradigm).  The addition of the constant one is necessary to 

accommodate the potential for reaction at the center of the graph.  The addition 

of this linear weighting of reactivity produces modest changes in the observed 

distribution of 15-mers (Figure 3).  

A modification of this steric hindrance paradigm involves weighting the 

propagation probabilities by squaring the modified leaf-center distance and 

dividing by the sum of the squares of modified leaf-to-center distances 

(
( )
( )∑ +

+
= 2

2

kd
kd

p
j

i
i ; referred to as the squared reactivity paradigm).  This 

modification to the steric hindrance paradigm may model a three-dimensional 

pseudodendrimer better than the linear model.  This treatment further refines the 

distribution (Figure 3). 
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Figure 3.  Sequence versus Fraction of 15-mer Pseudodendrimers. 

Analysis of Pseudodendrimer Graphs.  The resulting data suggest that 

pseudodendrimers, created in the fashion modeled above, do not grow with 

perfect symmetry but instead form a distribution of several pseudodendrimers 

(Figure 3).  Summary statistics for the populations of dendrimers determined by 

the various growth paradigms were determined by weighting versus the fraction 

of population for each monomer.  In an effort to discern deviation of the 

pseudodendrimer aggregate from a sample of perfect dendrimers, these values 

were then compared to the “most dendritic” structure for the same number of 

monomers by dividing the root mean squared values for the pseudodendrimers 

with the value for the dendrimer (Table 1).  Unsurprisingly, the summary statistics 

suggest that the larger structures show a relatively larger variation in leaf-to-root 

distances for agglomerations of pseudodendrimers generated.  The deviations 
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for leaf-to-center appear to be independent of the number of monomers for the 

samples studied, regardless of the propagation model used.   

Table 1.  Deviations of populations of pseudodendrimers from dendrimers 

While the root-mean-squared method converts the numbers to absolute 

values, it should be noted that unlike the leaf-to-root index, the leaf-to-center 

index contains a significant proportion of structures with smaller leaf-to-center 

distance averages.  The overall averages for the leaf-to-center distances were 

smaller than the perfect dendron in all cases studied, contrasting the 

corresponding averages for the leaf-to-root index.   

Another very interesting result occurs when the maximum expected relative 

standard deviations for leaf-to-root and leaf-to-center distances are determined.  

The highest leaf-to-root RSD will always be achieved by the polymer of named 

by the sequence [k, k, (k-1), (k-2), … , 2, 1].  This has sum ( )
2

1+
+

kkk  and mean 

( )
( )12

3
+
+

=
k
kkμ .  We first calculate: 

 Relative RMS deviation from Dendritic 
Leaf-to-Center Average Distance 

Relative RMS deviation from Dendritic 
Leaf-to-Root  Average Distance 

 15-mera 13-merb 11-merc 15-mera 13-merb 11-merc 
Equimolar 0.067 0.077 0.063 0.199 0.159 0.104 

Equal 
Reactivityd 0.071 0.082 0.079 0.203 0.161 0.122 

Linear 
Reactivitye 0.072 0.084 0.080 0.212 0.168 0.126 
Squared 

Reactivityf 0.072 0.086 0.080 0.221 0.174 0.130 
  

 a relative to 33333333 
 b relative to 3333332 
 c relative to 332332 
 d equal reactivity paradigm 
 e linear reactivity paradigm 
 f squared reactivity paradigm 

 



11 
 

( ) ( )( ) ( ) 2

1

222

2
12

6
1212 μμμμμ kkkkkkiii

k

i
+

+
−

++
=+−=−∑ ∑ ∑ ∑

=

. 
(1) 

The square of the standard deviation is   
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1
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when combined with above yields 
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(3) 

This allows the calculation of σ/μ: 

( )
( )

( )
( )

2

32

2

23

961

2741

3
1

112
264

3
12

kk

kkk
k

kkkk
kk
k

++

−−+
=

+
+−+

+
+

=
μ
σ . 

(4) 

As ∞→k , (4) approaches 
3

1  ≈ 0.577 as an upper bound.  This places a 

maximum limit on the relative standard deviation for the leaf-to-root distance.  

Additionally, the same result occurs upon analysis of the leaf-to-center distances, 

with  
3

1  as an upper bound for the RSD.  Corresponding values for random 

hyperbranched polymers are 2  ≈ 1.414.  One would expect similar values for 

pseudodendrimers synthesized by post-synthetic modification, since this 

synthetic method does not significantly change the overall length of the leaf-to-

center or leaf-to-root distances in the limit of ∞→k . 

Conclusions 
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For the present initial study, the tree diagrams were produced for all potential 

pseudodendrimers that are likely formed during the continuous reaction of an 

AB2 monomer with an enhancement of reactivity at linear branch points during 

polymerization.  The relative proportions of various pseudodendrimers based on 

three models of reactivity were determined.  Indices describing the 

pseudodendrimers were applied, and averages based on the relative proportions 

were estimated.   This work provides five significant outcomes: 

1. A method for predicting the precise difference between likely 

pseudodendrimer structure and perfect dendronic structure based on the 

number of monomers is proposed. 

2. This method can be easily applied to expected distributions of various 

structures to yield average differences in structure. 

3. The determined differences for the set of compounds studied were relatively 

small, suggesting larger pseudodendrimeric structures may exhibit the same 

similarities to larger dendrimeric structures. 

4. The development of the leaf-to-center index suggests a simple method to bias 

growth models for generation of pseudodendrimeric trees. 

5. The number of potential structures is growing quickly, mandating that 

analyses of larger structures be performed computer simulation.  This will be 

the subject of our upcoming publication. 
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Supplemenatry Table 1.  Descriptive indices for 15-mer pseudodendrimersa 

 

Sequence 
Root 
Mean 

Root 
RSD 

Root 
RMSDb 

Center 
Mean 

Center 
RSD 

Center 
RMSDb 

33333333 3.00 0.00 0.00 3.00 0.00 0.00 
44323333 3.13 0.19 0.04 3.13 0.22 0.04 
44324432 3.25 0.26 0.08 3.25 0.26 0.08 
44333332 3.13 0.19 0.04 3.00 0.17 0.00 
44344322 3.25 0.26 0.08 2.63 0.18 0.13 
44442332 3.25 0.26 0.08 3.13 0.22 0.04 
44443322 3.25 0.26 0.08 2.75 0.16 0.08 
44444431 3.50 0.29 0.17 2.75 0.16 0.08 
55432332 3.38 0.33 0.13 3.13 0.34 0.04 
55433322 3.38 0.33 0.13 2.88 0.24 0.04 
55434431 3.63 0.34 0.21 2.88 0.24 0.04 
55444222 3.50 0.35 0.17 2.38 0.29 0.21 
55444331 3.63 0.34 0.21 2.63 0.18 0.13 
55455421 3.88 0.37 0.29 2.63 0.18 0.13 
55553222 3.63 0.39 0.21 3.00 0.29 0.00 
55553331 3.75 0.37 0.25 2.75 0.24 0.08 
55554421 3.88 0.37 0.29 2.63 0.18 0.13 
66543222 3.75 0.44 0.25 3.00 0.37 0.00 
66543331 3.88 0.42 0.29 2.88 0.30 0.04 
66544421 4.00 0.41 0.33 2.75 0.24 0.08 
66555321 4.13 0.43 0.38 2.75 0.24 0.08 
66664321 4.25 0.45 0.42 2.88 0.30 0.04 
77654321 4.38 0.48 0.46 2.88 0.37 0.04 

a graphs of trees presented in Appendix 

b relative to 33333333 
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Supplementary Table 2. 
A table of all structures studied follows.  The center-finding algorithm is also 

shown by changing the shapes of the vertices which are deleted according to 

Jordan’s method.  To follow the deletion, squares are deleted first, then triangles, 

then circles, then diamonds, and finally pentagons.  The resulting center is 

colored gray to ease identification.  An analogous graph in the style described in 

the text is indicated for the first structure to aid the reader. 

# 
Repeat 
Units 

Structure Identifier 
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The use of graph theory allows simulation of the generation of 

pseudodendrimers as well as the comparison of the structures of 

pseudodendrimers to dendrimers.  The resulting analysis indicates that likely 

aggregates of pseudodendrimers structures will have properties that deviate only 

slightly from dendrimers. 


