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Abstract - We devise a new test for convergence or divergence of an infinite series — the
Power Mean Test. We explore the strength of this test relative to that of the Ratio and
Root Tests and provide a family of series where the Power Mean Test is the most useful of
the three tests.
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1 Introduction

The question of convergence of an infinite series has long been pondered by many math-
ematicians. Several tests have been devised to determine convergence such as the Ratio
Test and the Root Test. In this paper, we construct a new test which can be useful for
some series. Suppose we have the series

∑∞
i=0 ai, ai 6= 0.

For p real, we recall the power mean Mp on sets of positive real numbers to be(
1

n

n−1∑
i=0

(
ai
)p) 1

p

,

where n is the number of elements in the set. Also recall the following useful properties of
power means: M1 is the arithmetic mean, and M0 = limp→0Mp is exactly the geometric
mean. Additionally, the power mean is increasing in p by the generalized mean inequality,
i.e., if p < q, then Mp(x1, . . . , xn) ≤ Mq(x1, . . . , xn), with equality occurring only when
x1 = . . . = xn. These facts are proven in pages 202 – 215 of [2].

Using this, we will find a convergence test that is stronger than the ratio test. While
not stronger than the root test, for some series, it is simpler to apply.

We define the partial power mean of the series
∑∞

i=0 ai as

Mn
p (
∑∞

i=0 ai) = Mp

(∣∣∣a1a0 ∣∣∣ , ∣∣∣a2a1 ∣∣∣ , . . . , ∣∣∣ an
an−1

∣∣∣) which we will refer generally to as Mn
p . This

is the power mean of the first n consecutive ratios of the series ai.
Cruz-Uribe considers this approach in his paper [1], specifically with p = 1. He shows

that limn→∞ |an|1/n = limn→∞

∣∣∣ an
an−1
· · · a1

a0

∣∣∣1/n, meaning that the root test could also be
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calculated by finding the geometric mean of the consecutive ratios of the series. He then
goes on to say that by the arithmetic – geometric mean inequality, if the arithmetic mean
of the consecutive ratios is less than one, the series will converge. He denotes this test
the Arithmetic Mean Test.

This brings us to our first theorem, which is a generalization of the Arithmetic Mean
Test.

2 Results

Theorem 2.1 (Power Mean Test) Let s < 0 < t. If

lim inf
n→∞

Mn
s

(
∞∑
i=0

ai

)
> 1,

the series
∑∞

i=0 ai diverges, and if

lim sup
n→∞

Mn
t

(
∞∑
i=0

ai

)
< 1,

the series
∑∞

i=0 ai converges.

Proof. Mn
s ≤ Mn

0 ≤ Mn
t by the generalized mean inequality. Take the appropriate

limit, and recall that limn→∞M
n
0 is exactly the root test. �

Corollary 2.2 If limn→∞M
n
p (
∑∞

i=0 ai) = L, then the series
∑∞

i=0 ai converges if L < 1
and p > 0, and diverges if L > 1 and p < 0.

Proof. This follows easily from Theorem 2.1 and definitions of lim sup and lim inf. �
The strength of this test exists through the comparison between the power mean and

the geometric mean. However, the power mean is increasing in p. Thus this Power Mean
Test is a weaker version of Root Test since the geometric mean of a sequence could be
less than 1, while a power mean on that sequence could greater than 1. Because of this, it
may seem as though the usefulness of the Power Mean Test decreases dramatically with
large p, however, this is not the case. As we go on to explore its connection with the Ratio
Test, we will find that the Power Mean Test is actually stronger than the Ratio Test even
with large p.

Theorem 2.3 Let s < 0 < t.

lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ≤ lim inf
n→∞

Mn
s

(
∞∑
i=0

ai

)

lim sup
n→∞

Mn
t

(
∞∑
i=0

ai

)
≤ lim sup

n→∞

∣∣∣∣an+1

an

∣∣∣∣
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Proof. For the sake of brevity, we will only show the proof of the second inequality, as
the first follows a very similar argument.

Set L = lim supn→∞

∣∣∣an+1

an

∣∣∣ . If L = +∞, there is nothing to prove. If L is finite, then

let ε > 0. There must be some N > 0 such that for all n > N ,
∣∣∣an+1

an

∣∣∣ < L + ε/2. There

must also be some N ′ > N such that for all n > N ′,

Mt

(∣∣∣a1a0 ∣∣∣ , . . . , ∣∣∣aN+1

aN

∣∣∣ , L+ ε/2, L+ ε/2, . . . , L+ ε/2
)

is the power mean of n items and is

less than (L+ ε/2) + ε/2. Now, for all n > N ′, Mt

(∣∣∣a1a0 ∣∣∣ , . . . , ∣∣∣an+1

an

∣∣∣) ≤
Mt

(∣∣∣a1a0 ∣∣∣ , . . . , ∣∣∣aN+1

aN

∣∣∣ , L+ ε/2, L+ ε/2, . . . , L+ ε/2
)
< L+ ε. Hence

lim supn→∞Mt

(∣∣∣a1a0 ∣∣∣ , . . . , ∣∣∣an+1

an

∣∣∣) < L + ε. Since this is true for any ε > 0, in fact

lim supn→∞M
n
t ≤ L. �

This means that if the Power Mean Test is inconclusive, the Ratio Test will be as well.
And if the Ratio Test shows either convergence or divergence, the Power Mean Test will
give the same result.

Example 2.4

One may wonder in what instance the Power Mean Test would be preferable to use.
In some cases, the Ratio Test will be inconclusive, and the Power Mean Test will be easier
to apply than the Root Test. Take the following series for example.

a0 = 1, ak = ak−1

(
4

3

∣∣∣∣sin(π6 +
kπ

2

)∣∣∣∣+
1

k2 + 5k + 6

)r

where r is a positive real constant. Let Tk =

∣∣∣∣ akak−1

∣∣∣∣ be the kth ratio of consecutive

terms in ak. We find that lim supk→∞ Tk =
(

4
3
·
√
3
2

)r
=
(

2√
3

)r
> 1 and lim infk→∞ Tk =(

4
3
·
√
1
2

)r
=
(
2
3

)r
< 1. Therefore the Ratio Test is indeterminate. We could apply the

Root Test by finding the geometric mean of consecutive ratios, however due to the rational
term, an easier option would be to use the Power Mean Test with p = 1/r. This yields

lim sup
n→∞

Mn
1/r

(
∞∑
k=0

ak

)
= lim sup

n→∞

(
1

n

n∑
k=1

(Tk)1/r
)r

=

lim sup
n→∞

(
1

2n

2n∑
k=1

((
4

3

∣∣∣∣sin(π6 +
kπ

2

)∣∣∣∣+
1

k + 2
− 1

k + 3

)r)1/r
)r

=

lim sup
n→∞

(
1

2n

(
2√
3
n+

2

3
n+

1

3
− 1

2n+ 3

))r

=

lim sup
n→∞

(
1

2

(
2
√

3 + 2

3
+

1

3n
− 1

2n2 + 3n

))r

=

(√
3 + 1

3

)r

< 1.
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Therefore the series converges by the Power Mean Test. Notice we could have done a
similar calculation with an r < 0, except the Power Mean Test would show divergence.
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