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Subsums of the Harmonic Series
Brian Lubeck and Vadim Ponomarenko

Abstract. We consider subsums of the harmonic series, and determine conditions for their
convergence. We apply these conditions to determine convergence for a family of series that
generalizes Kempner’s series.

The harmonic series, of course, diverges; however, if we remove enough terms, what
remains will converge. This problem has a long history with this MONTHLY. In 1914
(see [7]), Kempner proved that removing those terms whose denominators contain a
digit 9 anywhere, the resulting series converges. In 1916 (see [6]), Irwin extended this
result. He proved that if we choose any natural number N , and remove those terms
whose denominators contain more than N 9’s, the resulting series still converges.
Since that time various authors (see [3, 4, 5, 8, 9]) have looked at variations of this
idea, determining convergence of similar subsums of the harmonic series, and calcu-
lating or estimating the sums when convergent.

While Kempner allowed no 9’s at all, and Irwin allowed only a miserly N 9’s,
we propose to generously allow arbitrarily many 9’s, so long as the proportion of 9’s
remains below a fixed parameter λ. We will prove that the series will converge if and
only if λ < 1

10
. Consequently, our result subsumes most of theirs. Our proofs use ideas

from Riemann–Stieltjes integration, statistics, and combinatorics.

1. NATURAL DENSITY. We fix A ⊆ N, a subset of the naturals. We assume A
is infinite. We order this set sequentially, naming its elements as A = {ak}k≥1,
where ak < ak+1 for all k ∈ N. We call A reciprocally convergent or r. conver-
gent, if

∑
k≥1

1
ak

converges. We call A r. divergent otherwise. For x ∈ R, we define
A(x) = |{a ∈ A : a ≤ x}|, the number of elements of A less than or equal to x. A
commonly used measure of the “size” of A is its asymptotic density, defined as

d(A) = lim
x→∞

A(x)

x
.

For example, if A is the set of positive even (or odd) numbers, then A(x) is within
a fixed constant of x

2
; hence d(A) = 1

2
. Now, d(A) need not exist, since the limit

will not exist for certain sets A. For example, suppose that A contains just those
m-digit numbers where m is even. Now, for k ∈ N, A(102k+1)

102k+1 ≥ 9·102k
102k+1 = 0.9 but

A(102k)

102k
≤ 102k−1+1

102k
, which is barely over 0.1. However, d(A) will exist in the follow-

ing important case.

Theorem 1. If A is r. convergent, then d(A) exists and equals 0.

Proof. Let ε > 0. SinceA is r. convergent, there is someN > 0 such that
∑

ak≥N
1
ak
<

ε
2
. Set A′ = A ∩ [N,∞). We will now prove that A

′(x)
x

< ε
2

for all x > 0. Suppose
otherwise; then there is some x > 0 such that A′(x) ≥ ε

2
x. But then

∑
ak≥N

1
ak
≥∑

N≤ak≤x
1
ak
≥ A′(x) 1

x
≥ ε

2
, a contradiction. We now compute A(x)

x
≤ N+A′(x)

x
<

N
x
+ ε

2
. For all x > 2N

ε
, we have N

x
< ε

2
and so 0 ≤ A(x)

x
< ε.
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The converse of Theorem 1 does not hold. The most famous example is due to
Euler, who proved that the set of primes P is r. divergent. We can see that d(P) = 0 by
the prime number theorem.

We turn now to Riemann–Stieltjes integration. This is a generalization of familiar
Riemann integration that can also be used for some discrete functions. For a lovely in-
troduction to the subject, see Chapter 7 of [2]; however we will only need the following
specific result. Its statement uses only a standard Riemann integral. It has a short proof
using Riemann–Stieltjes integration; instead we include a slightly longer, elementary,
proof. Similarly, our later results on Kempner-type series were originally done with
Riemann-Stieltjes integration, but have been rewritten to use alternative methods.

Theorem 2. [2] Let {bk} be a sequence of real numbers, and B(x) =
∑

k≤x bk. Let
t ≥ 1, and let f(x) have a continuous derivative in the interval [1, t]. Then∑

k≤t

bkf(k) = −
∫ t

1

B(x)f ′(x)dx+B(t)f(t).

Proof. For any natural number k, and every x ∈ [k, k + 1), note that B(x) = B(k).
Now, fix t ≥ 1 and set n to be the integer satisfying n ≤ t < n+ 1. We break up the
integral and apply the the fundamental theorem of calculus, finding that∫ t

1

B(x)f ′(x)dx =

∫ t

n

B(x)f ′(x)dx+
n−1∑
k=1

∫ k+1

k

B(x)f ′(x)dx

=

∫ t

n

B(n)f ′(x)dx+
n−1∑
k=1

∫ k+1

k

B(k)f ′(x)dt

= B(n)(f(t)− f(n)) +
n−1∑
k=1

B(k)(f(k + 1)− f(k))

= B(n)f(t)−
n∑
k=1

B(k)f(k) +
n∑
k=2

B(k − 1)f(k)

= B(n)f(t)−B(1)f(1)−
n∑
k=2

(B(k)−B(k − 1))f(k)

= B(n)f(t)−
n∑
k=1

bkf(k)

= B(t)f(t)−
∑
k≤t

bkf(k).

Theorem 2 allows us to convert sums into integrals, which we do in the following.

Theorem 3. With notation as above,
∑

ak≤t
1
ak

=
∫ t
1
A(x)

x2
dx+ A(t)

t
.

Proof. Given our sequence A = {ak}k≥1, we compute the closely related zero-one

sequence B = {bk}k≥1, defined as bk =

{
1 k ∈ A
0 k /∈ A . For any real x ≥ 0, we de-
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fine B(x) =
∑

k≤x bk, and note that B(x) = A(x). We set f(x) = 1
x

, observe that∑
k≤t bkf(k) =

∑
ak≤t

1
ak

, and apply Theorem 2.

We can now present our convergence characterization for harmonic subsums. The-
orems 1 and 4 determine r. convergence for all A.

Theorem 4. Suppose that d(A) = 0. Then
∑

k≥1
1
ak

=
∫∞
1

A(x)

x2
dx. In particular, A

is r. convergent if and only if
∫∞
1

A(x)

x2
dx converges.

Proof. Take t→∞ in Theorem 3.

This Riemann–Stieltjes method is not new, but deserves to be better known. For
example, in 1915 Brun considered the set of twin primes P2, and proved that P2(x) =

O(x(log log x)2

(log x)2
); then by ideas similar to those in Theorem 4 he concluded that P2 was

r. convergent.
Although Theorem 4 gives an exact answer, typical sets A give a step function

A(x) whose steps are dispersed in some complicated way that makes it too difficult to
integrate exactly. However, we can still get good bounds on the sum with the following,
by computing a partial sum of the first s terms, and estimating the error by bounding
the remaining integral.

Theorem 5. Suppose that A is r. convergent. Let s ∈ N, and set t = as. Then

∑
k≥1

1

ak
=

∑
ak≤t

1

ak
+

∫ ∞
t

A(x)

x2
dx− s

t
.

Proof. Let T > t. Apply Theorem 3 with t and also T to get
∑

ak≤t
1
ak

=
∫ t
1
A(x)

x2
dx+

A(t)

t
and

∑
ak≤T

1
ak

=
∫ T
1

A(x)

x2
dx+ A(T )

T
. Subtract, and let T →∞.

To illustrate, consider the series
∑

k≥1
1
k2

, which corresponds to ak = k2. This is

known as the Basel problem. Euler determined its sum to be π2

6
≈ 1.6449, but we

will estimate it using Theorem 5. We compute the first ten terms, i.e., s = 10 with
t = 100, and get

∑
ak≤100

1
ak

= 1968329
1270080

≈ 1.5498. Hence the full series has sum
1968329
1270080

− 10
100

+
∫∞
100

A(x)

x2
dx. The function A(x) is a step function (whose steps have

height 1) that satisfies
√
x− 1 ≤ A(x) ≤

√
x. Hence∫ ∞

100

√
x− 1

x2
dx ≤

∫ ∞
100

A(x)

x2
dx ≤

∫ ∞
100

√
x

x2
dx.

The bounding integrals are easy to compute, so we find 0.19 ≤
∫∞
100

A(x)

x2
dx ≤ 0.2.

We conclude that
∑

k≥1
1
k2

is in the range [1.6398, 1.6498].

2. KEMPNER-TYPE SERIES. We are now ready to generalize Kempner’s series.
Fix λ ∈ [0, 1], and define

Aλ = {n ∈ N : (#9′s in n) ≤ λ(# digits in n)}.

Special cases include A0, Kempner’s original series, and A1, the harmonic series.
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Fix m ∈ N, and consider numbers with m digits. Intuitively, we select one at ran-
dom. The quantity of 9’s we get is modeled by a binomial distribution, with m ex-
periments and probability of success (i.e., getting a 9), of p = 1

10
. Chernoff’s bounds

tell us that the number of successes will usually cluster near the expected number of
successes, which is pm = m

10
. That is, we expect that a “typical” m-digit number will

have m
10

9’s. Thus, if λ ≥ 1
10

, then Aλ will include “typical” numbers, and we might
expect Aλ to be not too different from A1, and thus r. divergent. On the other hand, if
λ < 1

10
, then we might expect the opposite. This intuition will turn out to be correct.

We now recall a version of Chernoff’s bound (see, e.g., [1]) on the lower tail of a
binomial (or Poisson) distribution. A similar bound holds for the upper tail.

Theorem 6 (Chernoff). LetX denote the sum of n independent 0-1 random variables,
and let µ denote the expected value of X . Let δ be fixed in the interval (0, 1). Then

Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ
2 .

Theorem 7. With notation as above, if λ < 1
10

, then Aλ is r. convergent.

Proof. We first estimate |Aλ ∩ [10m−1, 10m)|, the number of elements of A with ex-
actlym digits. Consider choosing each of them digits uniformly at random, and letting
X denote the total number of 9’s among the m digits chosen. If X > λm, then that
yields a number outside ofAλ, as it has too many 9’s. IfX ≤ λm, then that will yield
a number with an allowable quantity of 9’s, but it might still be outside ofAλ if the first
digit selected happens to be 0. Hence |Aλ ∩ [10m−1, 10m)| ≤ Pr(X ≤ λm)(10m −
10m−1). Now, set δ = 1 − 10λ. Note that λm = (1 − δ)m

10
= (1 − δ)µ. By Cher-

noff’s bound, we have

|Aλ ∩ [10m−1, 10m)| ≤ s−m(10m − 10m−1),

for s = e
(1−10λ)2

20 . Since λ < 1
10

, we must have s > 1. We now calculate

∑
a∈Aλ

1

a
=

∑
m≥1

∑
a∈Aλ∩[10m−1,10m)

1

a
≤

∑
m≥1

|Aλ ∩ [10m−1, 10m)| 1

10m−1

≤
∑
m≥1

s−m(10m − 10m−1)101−m = 9
∑
m≥1

s−m =
9

s− 1
<∞.

For λ < 1
10

, Theorem 7 gives an upper bound of 9
s−1 for the series sum; however

this isn’t particularly tight. With some care, and computation of partial sums, this could
be much improved. We leave the search for such tighter bounds to others, and turn to
the case of λ ≥ 1

10
. We will use different tools to prove r. divergence.

Theorem 8. With notation as above, if λ ≥ 1
10

, then Aλ is r. divergent.

Proof. Let m > 1, and set Tm to be the set of all m-digit numbers whose lead-
ing digit is not 9. For each x ∈ Tm, we apply the cyclic digit permutation 0 →
1 → · · · → 8 → 9 → 0, simultaneously to every digit but the leading one. For ex-
ample, 30772→ 31883→ 32994→ 33005→ · · · → 39661→ 30772. There are
ten numbers in this cycle, all distinct. Call these ten elements of Tm equivalent. Fix
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x ∈ Tm, and count how many times each of 0, 1, . . . , 9 appears in x, ignoring the
leading digit. For example, 31883 contains one 1, two 8’s, and one 3. By a version of
the pigeonhole principle, if we choosem− 1 times from ten options, then some option
must have been selected at most bm−1

10
c times. Hence, among the options 0, 1, . . . , 9,

there must be some option that appears in x at most bm−1
10
c ≤ m

10
≤ λm times. So

there is some digit in x, not necessarily 9, appearing at most λm times. Hence there is
some y ∈ Tm, equivalent to x, where the digit 9 appears at most λm times. Therefore,
this y ∈ Aλ. Each equivalence class in Tm must therefore contain at least one member
of Aλ. Note that the leading m− 1 digits (all but the last) of any x ∈ Tm determine
its equivalence class. Therefore, Tm contains 8 · 10m−2 equivalence classes, and so at
least 8 · 10m−2 elements of Aλ. Hence

Aλ(10m − 1) ≥ 8 · 10m−2 + 8 · 10m−3 + · · ·+ 8 · 100 = 8

9
(10m−1 − 1)

and Aλ(10m−1)
10m−1 ≥ 8

9
10m−1−1
10m−1 . This lower bound for Aλ(x)

x
, for an infinite family of

values of x, is very close to 8
90

. Hence either d(Aλ) ≥ 8
90

or d(Aλ) doesn’t exist. In
either case, d(Aλ) 6= 0, so by Theorem 1, A is r. divergent.

Similar methods to those of Theorems 7 and 8 will work for other digits, and in
bases other than base 10. We invite the reader to generalize to longer substrings, like
89, and determine which λ will lead to convergent subsums. We also invite the reader
to apply these methods to other subsums of the harmonic, for example keeping no
more than 9.99m of the integers with m digits.
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