
Numerical Semigroups on Compound Sequences

Claire Kiers, Christopher O’Neill, and Vadim Ponomarenko

Abstract

We generalize the geometric sequence {ap, ap−1b, ap−2b2, . . . , bp} to
allow the p copies of a (resp. b) to all be different. We call the se-
quence {a1a2a3 · · · ap, b1a2a3 · · · ap, b1b2a3 · · · ap, . . . , b1b2b3 · · · bp} a com-
pound sequence. We consider numerical semigroups whose minimal set of
generators form a compound sequence, and compute various semigroup
and arithmetical invariants, including the Frobenius number, Apéry sets,
Betti elements, and catenary degree. We compute bounds on the delta
set and the tame degree.
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1 Introduction

Let N denote the set of positive integers, and N0 denote the set of nonnegative
integers. We call S a numerical semigroup if S ⊆ N0, S is closed under addition,
S contains 0, and |N\S| <∞. We say {x0, x1, . . . , xp} is a set of generators for
S if S = {

∑p
i=0 aixi : ai ∈ N0}, and call it minimal if it is minimal as ordered by

inclusion. In this case we say S has embedding dimension p + 1. For a general
introduction to numerical semigroups, please see the monograph [19].

Numerical semigroups whose minimal generators are geometric sequences
〈ap, ap−1b, ap−2b2, . . . , bp〉 have been investigated recently in [18, 21]. We pro-
pose a generalization of such sequences, which we call compound sequences.
These also generalize supersymmetric numerical semigroups, as defined in [10],
whose minimal generators are 〈 st1 ,

s
t2
, . . . , stn 〉, where s = t1t2 · · · tn, and the ti

are pairwise coprime.

Definition 1. Let p, a1, a2, . . . , ap, b1, b2, . . . , bp ∈ N. Suppose that:

1. 2 ≤ ai < bi, for each i ∈ [1, p].

2. gcd(ai, bj) = 1 for all i, j ∈ [1, p] with i ≥ j.

For each i ∈ [0, p], we set ni = b1b2 · · · biai+1ai+2 · · · ap. We then call the
sequence {n0, n1, . . . , np} a compound sequence.

From this definition it is clear that gcd(ai, b1b2 · · · bi) = 1, gcd(aiai+1 · · · ap, bi) =
1, and lastly gcd(aiai+1 · · · ap, b1b2 · · · bi) = 1. Note that the special case of
a1 = a2 = · · · = ap, b1 = b2 = · · · = bp gives a geometric sequence.
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Henceforth we will focus on numerical semigroups on compound sequences,
which we will abbreviate as NSCS. Such semigroups, though rare, are common
enough to warrant study. For example, consider numerical semigroups of em-
bedding dimension 3, whose largest generator is at most 200. Of these, 1% have
their generators in a compound sequence, while 0.6% have their generators in an
arithmetic sequence. The latter class of semigroups, and variations thereof, has
been the subject of much recent study in [3, 5, 8, 16, 17], and many factorization
invariants have been computed. This paper does similarly for NSCS.

Given a numerical semigroup S minimally generated by n0, . . . , np, the map

φ : Np+1
0 → S, φ(x0, x1, . . . , xp) = x0n0 + x1n1 + · · ·+ xpnp

is a monoid homomorphism, called the factorization homomorphism of S. Let
σ be its kernel congruence, that is xσy if and only if φ(x) = φ(y). Then S is
isomorphic to Np+1

0 /σ. We will consider σ as a subset of Np+1
0 × Np+1

0 . Set
I(S) to be the irreducibles of σ, viewed as a monoid. Set ei, for i ∈ [0, p], to
be the standard basis vectors of Np+1

0 . For n ∈ S, the set φ−1(n) is the set
of factorizations of n. We say n > 1 is a Betti element if there is a partition
φ−1(n) = X ∪ Y satisfying

∑p
i=0 xiyi = 0 for each x ∈ X, y ∈ Y .

Betti elements capture important semigroup structure, and have received
considerable recent attention ([6, 11, 12, 13]). In Section 2, we examine the
congruence σ when S is an NSCS. We prove that any NSCS is both free and
a complete intersection (Corollary 9) by explicitly describing in Theorem 8 its
unique minimal presentation (a minimal generating set of I(S)). As a conse-
quence, we characterize the Betti elements of any NSCS (Corollary 10).

In Section 4, we will compute for NSCS several arithmetic properties used in
factorization theory. For a general reference on factorization theory, see any of
[1, 2, 15], and for more background on arithmetic invariants in general numerical
semigroups see [5, 7]. We now define the invariants considered in this paper,
including the delta set (Corollary 20), catenary degree (Theorem 18) and tame
degree (Theorem 21).

Fix a numerical semigroup S and n ∈ S. If x = (x0, . . . , xp) ∈ φ−1(n), the
length of the factorization x is |x| = x0 + · · ·+xp. We define the length set of n
as L(n) = {|x| : x ∈ φ−1(n)}. Writing L(n) = {s1 < s2 < · · · < sk}, we define
the delta set of n as ∆(n) = {si− si−1 : i ∈ [2, k]}, with ∆(n) = ∅ if |L(n)| = 1.
We define the delta set of S as ∆(S) = ∪n∈S∆(n).

For x, y ∈ Np+1
0 , define gcd(x, y) and the distance d(x, y) between by

gcd(x, y) = (min{x0, y0},min{x1, y1}, . . .min{xp, yp}) ∈ Np+1
0 ,

d(x, y) = max {|x− gcd(x, y)|, |y − gcd(x, y)|} .

Further, for Y ⊆ Np+1
0 , we define d(x, Y ) = min{d(x, y) : y ∈ Y }. Given n ∈ S

and x, y ∈ φ−1(n), then a chain of factorizations from x to y is a sequence
x0, x1, . . . xk ∈ φ−1(n) such that x0 = x and xk = y. We call this an N -chain
if d(xi, xi+1) ≤ N for all i ∈ [0, k − 1]. The catenary degree of n, c(n), is the
minimal N ∈ N0 such that for any two factorizations x, y ∈ φ−1(n), there is an
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N -chain from x to y. The catenary degree of S, c(S), is defined by

c(S) = sup{c(n) : n ∈ S}.

For i ∈ [0, p], we define φ−1i (n) = {(x0, . . . , xp) ∈ φ−1(n) : xi > 0}. We define
ti(n) = max{d(z, φ−1i (n)) : z ∈ φ−1(n)} for φ−1i (n) 6= ∅, and set ti(n) = −∞
otherwise. We define the tame degree of n as t(n) = max{ti(n) : i ∈ [0, p]}, and
the tame degree of S as t(S) = max{t(n) : n ∈ S}.

We conclude this section by presenting some elementary properties of com-
pound sequences to be used throughout the paper.

Proposition 2. Let {n0, n1, . . . , np} be a compound sequence as defined above.
Then the following all hold.

1. ni = bi
ai
ni−1, for each i ∈ [1, p].

2. n0 < n1 < . . . < np.

3. gcd(n0, n1, . . . , ni) =
∏p
j=i+1 aj for all i ∈ [0, p].

4. gcd(ni, ni+1, . . . , np) =
∏i
j=1 bj for all i ∈ [0, p].

5. gcd(n0, n1, . . . , np) = 1.

6. 〈n0, n1, . . . , np〉 is a minimally generated numerical semigroup.

7. ai = ni−1

gcd(ni−1,ni)
and bi = ni

gcd(ni−1,ni)
, for each i ∈ [1, p].

Proof. (1) trivial. (2) follows from (1) since ni

ni−1
= bi

ai
> 1 for each i ∈ [1, p].

(3) Set A =
∏p
j=i+1 aj . Since A divides each of n0, . . . , ni, it suffices to prove

that gcd(n′0, . . . , n
′
i) = 1, where n′0 = n0

A , . . . , n
′
i = ni

A . Suppose prime q di-
vides gcd(n′0, . . . , n

′
i). Then q| gcd(n′0, n

′
i) = gcd(a1a2 · · · ai, b1b2 · · · bi). Let k

be maximal in [1, i] so that q|ak, and let j be minimal in [1, i] so that q|bj . Since
q| gcd(ak, bj), by the definition of compound sequences we must have k < j.
But now q - n′k, a contradiction.
(4) Similar to (3). (5) follows from (3).
(6) This is a numerical semigroup by (5). To prove it is minimally generated, we
appeal to Cor. 1.9 from [19], by which it suffices to prove that ni /∈ 〈n0, . . . , ni−1〉
for each i ∈ [1, p]. Set x = aiai+1 · · · ap. We have x| gcd(n0, n1, . . . , ni−1). If
ni ∈ 〈n0, . . . , ni−1〉 then x|ni = b1b2 · · · biai+1ai+2 · · · ap. Cancelling, we get
ai|b1b2 · · · bi, a contradiction since ai > 1 yet gcd(ai, b1b2 · · · bi) = 1.
(7) follows by combining gcd(ni−1, ni) = b1b2 · · · bi−1ai+1ai+2 · · · ap gcd(ai, bi)
with gcd(ai, bi) = 1.

Note that Proposition 2.7 suggests that the generators n0, . . . np alone suffice
to recover the {ai}, {bi}. This is indeed the case, as shown in the following.

Proposition 3. Let n0, n1, . . . , np ∈ N with n0 < n1 < · · · < np. Suppose
that 〈n0, n1, . . . , np〉 is a minimally generated numerical semigroup. Then the
following are equivalent.
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1. {n0, n1, . . . , np} is a compound sequence.

2. n1n2 · · ·np−1 = gcd(n0, n1) gcd(n1, n2) · · · gcd(np−1, np)

Proof. Applying Proposition 2.7 to (1), we have n1

gcd(n1,n2)
n2

gcd(n2,n3)
· · · np−1

gcd(np−1,np)
=

a2a3 · · · ap = gcd(n0, n1), and cross-multiplying yields (2). Conversely, define
ai, bi as in Proposition 2.7. Note that aini = bini−1 and that gcd(ai, bi) = 1.
Also note that ai < bi since ni−1 < ni, and that ai > 1 since otherwise
ni−1|ni but the semigroup is minimally generated. Dividing both sides of (2)
by gcd(n1, n2) · · · gcd(np−1, np), we get a2a3 · · · ap = gcd(n0, n1). Since a1 =

n0

gcd(n0,n1)
we conclude that n0 = a1a2 · · · ap. Repeatedly applying aini = bini−1

gives ni = b1b2 · · · biai+1ai+2 · · · ap for i ∈ [0, p]. Lastly, if gcd(ai, b1b2 · · · bi) =
d > 1 for some i, then d divides each of n0, n1, . . . , np, a contradiction.

Applying Proposition 3, we see that in embedding dimension 2, every nu-
merical semigroup 〈a, b〉 is on a compound sequence. Further, in embedding
dimension 3, we see that numerical semigroup 〈a, b, c〉 is on a compound se-
quence if and only if we can write b = b1b2 where b1|a and b2|c.

2 Factorization Structure

We begin our study of NSCS by examining their factorizations. These have very
nice structure, which will be developed in this section. We first compute their
minimal presentation (Theorem 8) by showing that any two factorizations of
the same element are connected by a chain of basic swaps (Definition 6).

For nonzero x ∈ Zp+1, we define min(x) = min{i : xi 6= 0} and max(x) =
max{i : xi 6= 0}. Note that for any x, y ∈ Np+1

0 , min(x) ≥ min(x + y) and
max(x) ≤ max(x+y). Note also that min(x−y) is the smallest coordinate where
x, y differ. This next, technical, result divides factorizations of the important
element aini = bini−1 into two quite different categories. In particular, it implies
that they are each Betti elements.

Proposition 4. Let S = 〈n0, . . . , np〉 be an NSCS, and let i ∈ [1, p]. Let
x ∈ φ−1(aini). Then one of the following must hold:

1. min(x) ≥ i and |x| ≤ ai; or

2. max(x) ≤ i− 1 and |x| ≥ bi.

Further, factorizations of both types exist, where all inequalities are met.

Proof. Set a = aiai+1 · · · ap, b = b1b2 · · · bi. Note that aini = ab and that a
divides each of n0, n1, . . . , ni−1 while b divides each of ni, ni+1, . . . , np. We have

0 ≡ aini ≡
p∑
j=0

xjnj ≡
i−1∑
j=0

xjnj (mod b).
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We divide both sides by a (since gcd(a, b) = 1) to get 0 ≡
∑i−1
j=0 xj

nj

a (mod b).

If
∑i−1
j=0 xj

nj

a = 0, then min(x) ≥ i. Otherwise, b ≤
∑i−1
j=0 xj

nj

a and we multiply

both sides by a to get ab ≤
∑i−1
j=0 xjnj ≤

∑p
j=0 xjnj = aini = ab. All the

inequalities are equalities and hence max(x) ≤ i− 1.
Now, partition φ−1(n) = X∪Y , where factorizations x ∈ X satisfy min(x) ≥

i and factorizations y ∈ Y satisfy max(y) ≤ i − 1. For any x ∈ X, we have
n = aini =

∑p
j=i xjnj ≥ |x|ni, and hence |x| ≤ ai. Similarly, for any y ∈ Y , we

have n = bini−1 =
∑i−1
j=1 yjnj ≤ |y|ni−1, and hence |y| ≥ bi.

Finally, note that aiei ∈ X and biei−1 ∈ Y .

This next lemma is essential for the proof of Theorem 8, and relates two
factorizations of the same element in an NSCS, on their extremal coordinates.
We omit its straightforward proof.

Lemma 5. Fix an NSCS S, n ∈ S, and x, y ∈ φ−1(n). Set m = min(x + y)
and m′ = max(x+ y). Then xm ≡ ym (mod bm+1) and xm′ ≡ ym′ (mod am′).

Definition 6. Fix an NSCS S = 〈n0, . . . , np〉 A basic swap is an element of
the kernel congruence σ, for each i ∈ [1, p], as given by

δi = (aiei, biei−1), δ′i = (biei−1, aiei)

We define Ω = {δi}∪{δ′i}, as the set of all basic swaps. For τ = (τ1, τ2) ∈ Ω,
if x+ τ1 = y+ τ2, we say that we apply the basic swap τ to get from x to y. If
x0, x1, . . . , xk is a chain of factorizations in φ−1(n), we call this a basic chain if
for each i ∈ [1, k−1] we get from xi+1 to xi by applying τi ∈ Ω. If a basic chain
also satisfies, for all i ∈ [1, k−1], that τi ∈ {δj , δ′j}, where j = 1+min(xi−1−xi),
we call it a left-first basic chain. Similarly, if a basic chain also satisfies, for all
i ∈ [1, k−1], that τi ∈ {δj , δ′j}, where j = max(xi−1−xi), we call it a right-first
basic chain.

Note that if z is part of either a left-first or right-first basic chain from x to y,
then min(z) ≥ min(x+y) and max(z) ≤ max(x+y). Note also that if we apply
basic swap δi (or δ′i) to get from x to y, then d(x, y) = d(aiei, biei−1) = bi. Each
basic swap is in σ since aini = bini−1, but in fact basic swaps are irreducibles
in σ, as shown by the following.

Lemma 7. Let S = 〈n0, . . . , np〉 be an NSCS. Then Ω ⊆ I(σ).

Proof. If some fixed δi were reducible, then there is some (αei, βei−1) ∈ σ,
with 0 < α < ai. Hence αb1 · · · bi−1biai+1 · · · aP = φ(αei) = φ(βei−1) =
βb1 · · · bi−1aiai+1 · · · aP . Cancelling, we get αbi = βai and hence αbi ≡ 0
(mod ai). Since gcd(ai, bi) = 1, in fact α ≡ 0 (mod ai), a contradiction.

The following theorem proves the existence of basic chains connecting any
two factorizations. Combined with Lemma 7, it implies that Ω is a minimal
presentation of σ.
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Theorem 8. Fix an NSCS S = 〈n0, . . . , np〉 and n ∈ S. For any x, y ∈ φ−1(n),
there are both left-first and right-first basic chains of factorizations from x to y.

Proof. We will only prove the existence of a left-first basic chain (the right-first
case is similar). We argue by way of contradiction. Let n be minimal possessing
at least one pair of factorizations x, y ∈ φ−1(n) that do not admit a left-first
basic chain between them. Of all such pairs in φ−1(n) not admitting a basic
chain, choose a pair x, y ∈ φ−1(n) with |xmin(x+y) − ymin(x+y)| minimal. For
convenience, set t = min(x + y). Depending on whether xt − yt is nonzero or
zero, we now have two cases, each of which will lead to contradiction.

If xt − yt is positive (resp. negative), we apply Lemma 5, and then apply
δt+1 to x (resp. y) to get a new z ∈ φ−1(n). Applying the inductive hypothesis,
we get a left-first basic chain of factorizations from z to y (resp. from x to z).
But now we may extend this to a left-first basic chain from x to y, which yields
a contradiction.

Lastly we have xt = yt > 0. We now set n̄ = n − xtnt, x̄ = x − xtet, ȳ =
y− ytet. Since n̄ < n, by the choice of n any two factorizations of n̄ must admit
a left-first basic chain between them. In particular, x̄, ȳ ∈ φ−1(n̄) must admit a
left-first basic chain x̄0, x̄1, . . . , x̄k. But then (x̄0 + xtet), (x̄

1 + xtet), . . . , (x̄
k +

xtet) is a left-first basic chain from x to y, which is a contradiction.

We recall that a numerical semigroup is a complete intersection if the cardi-
nality each of its minimal presentations is one less than its embedding dimension.
We recall that a numerical semigroup is free if for some ordering of its generators
n′1, . . . , n

′
p, and for all i ∈ [2, p], we have min{k ∈ N : kn′i ∈ 〈n′1, . . . , n′i−1〉} =

min{k ∈ N : kn′i ∈ 〈n′1, . . . , n′i−1, n′i+1, . . . , n
′
p〉}.

Corollary 9. Let S = 〈n0, . . . , np〉 be an NSCS. Then S is a free numerical
semigroup, and a complete intersection.

Proof. Corollaries 8.17 and 8.19 of [19].

Corollary 10. Let S = 〈n0, . . . , np〉 be an NSCS. Then {a1n1, a2n2, . . . , apnp}
is the set of Betti elements of S.

3 Apéry sets

For a semigroup S and m ∈ S, recall that the Apéry set is defined as

Ap(S,m) = {n ∈ S : n−m /∈ S}.

These are most commonly computed when m is an irreducible. In this section,
we will compute these Apéry sets when S is an NSCS (Theorem 15), after
introducing i-normal factorizations (Definition 11).

Definition 11. For a fixed NSCS S = 〈n0, . . . , np〉, a fixed n ∈ S, and a fixed
i ∈ [0, p], we call factorization x ∈ φ−1(n) i-normal if it satisfies 0 ≤ xj < bj+1

for all j < i, and 0 ≤ xj < aj for all j > i.
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Note that these conditions are equivalent to none of the basic swaps in the
set {δ1, δ2, . . . , δi, δ′i+1, δ

′
i+2, . . . , δ

′
p} applying to x. The following proposition

justifies calling the term “normal”.

Proposition 12. Let S = 〈n0, . . . , np〉 be an NSCS. Let n ∈ S, and let i ∈ [0, p].
Then there is exactly one x ∈ φ−1(n) that is i-normal.

Proof. We begin with an arbitrary factorization in φ−1(n), and apply the fol-
lowing algorithm. In each of the p steps, we change our factorization to another,
that is a bit closer to i-normal. Each step corresponds to a basic swap from
the ordered list δ1, δ2, . . . , δi, δ

′
p, δ
′
p+1, . . . , δ

′
i+1. In each step, we apply the basic

swap as many times as possible, while still retaining a factorization of n. This
will decrease a coordinate to satisfy the conditions of i-normality. Note that
the list is ordered so that after a coordinate is decreased, it is never increased
again. Hence the algorithm terminates with an i-normal factorization.

We now prove uniqueness. Let x, y be i-normal factorizations of n. Set
s = min(x − y). Suppose that s < i. We set z = (x0, x1, . . . , xs−1, 0, 0, . . . , 0),
and apply Lemma 5 to x−z, y−z, both factorizations of n−φ(z). We conclude
that xs ≡ ys (mod bs+1); however since x, y are i-normal in fact xs = ys,
a contradiction. Hence min(x − y) ≥ i. Similarly, max(x − i) ≤ i. Hence
x, y agree, except possibly for xi, yi. However if xi 6= yi they would not be
factorizations of the same n.

Uniqueness in Proposition 12 yields several consequences. Our first obser-
vation is that i-normal factorizations are maximal in the i-th coordinate.

Corollary 13. Let S = 〈n0, . . . , np〉 be an NSCS. Let n ∈ S, and let i ∈ [0, p].
Let x, y ∈ φ−1(s), and suppose that x is i-normal. Then xi ≥ yi.

Proof. Suppose that yi > xi. Then n − φ(yini) ∈ S, and has an i-normal
factorization z. But now z + yiei is an i-normal factorization for n, which
contradicts the uniqueness of x.

Note that since ai < bi, applying any basic swap δi decreases the factor-
ization length, while applying any δ′i increases the factorization length. This
observation, together with Theorem 8 and the comments preceding Proposition
12, yield the following.

Corollary 14. Let S = 〈n0, . . . , np〉 be an NSCS. Let n ∈ S. Then the min-
imum factorization length of n is the length of the p-normal factorization of
n. Also, the maximum factorization length of n is the length of the 0-normal
factorization of n.

We are now ready to compute the Apéry set of S. For n ∈ S, we let x be the
i-normal factorization for n. The following theorem proves that n ∈ Ap(S, ni)
if and only if xi = 0.
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Theorem 15. Let S = 〈n0, . . . , np〉 be an NSCS. Let i ∈ [0, p]. Then the Apéry
set Ap(S, ni) = {φ(u) : u ∈ Si}, where

Si =

{
u ∈ Np+1

0 :
u0 < b1, u1 < b2, . . . , ui−1 < bi, ui = 0,
ui+1 < ai+1, ui+2 < ai+2, . . . , up < ap

}
.

Proof. If x ∈ Si, then x is i-normal, and hence by Corollary 13, xi = 0 is maxi-
mal over all factorizations of φ(x). Hence φ(x− xi) /∈ S, and φ(x) ∈ Ap(S, ni).
On the other hand, for n ∈ Ap(S, ni), let x be the i-normal factorization of n. If
xi > 0 then n− ni ∈ S, which is impossible. Hence xi = 0 and thus x ∈ Si.

For a numerical semigroup S, recall that the largest integer in N\S is called
the Frobenius number of S, denoted g(S). In [4], Brauer and Shockley observed
that g(S) = maxAp(S;m) −m. Applying this to Theorem 15, with i = 0 for
simplicity, yields the followin direct generalization of the main result of [18].

Corollary 16. Let S = 〈n0, . . . , np〉 be an NSCS. Let i ∈ [0, p]. Then

g(S) = −n0 +

p∑
j=1

nj(aj − 1).

For a numerical semigroup S, recall that |N \ S| is called the genus of S
([20]). Corollaries 9 and 16, with i = 0 for simplicity, imply the following.

Corollary 17. Let S = 〈n0, . . . , np〉 be an NSCS. Then

|N \ S| = 1

2

1− n0 +

p∑
j=1

nj(aj − 1)

 .

4 Arithmetic Invariants

We now compute several arithmetic invariants in the NSCS context. First we
consider the catenary degree c(S), which we can determine exactly. In the
special case of a geometric sequence S = 〈ap, ap−1b, . . . , bp〉, this gives c(S) = b.

Theorem 18. Let S = 〈n0, . . . , np〉 be an NSCS. Then c(S) = max{b1, b2, . . . , bp}.

Proof. By Theorem 8, we may connect any two factorization by a basic chain.
Hence c(S) ≤ max{b1, . . . , bp}. Now fix i such that bi = max{b1, b2, . . . , bp}.
Let x, y be two factorizations of aini of the two types guaranteed by Propo-
sition 4. We have gcd(x, y) = 0 so d(x, y) = max{|x|, |y|} ≥ bi. Any chain
of factorizations connecting aini to bini−1 must at some point cross from one
factorization type to the other, a step of size at least bi. Hence c(aini) ≥ bi, so
c(S) ≥ max{b1, . . . , bp}.
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Note that in [7] it was shown that the catenary degree of a numerical semi-
group is achieved at a Betti element. Theorem 18 identifies the specific Betti
elements, and the exact catenary degree.

We now consider ∆(S) in our context, which we can partially determine.
Recall from [14] that min(∆(S)) = gcd(∆(S)).

Theorem 19. Let S = 〈n0, . . . , np〉 be an NSCS. Set N = {b1 − a1, b2 −
a2, . . . , bp − ap}. Then:

1. min(∆(S)) = gcd(N),

2. N ⊆ ∆(S), and

3. max(∆(S)) = max(N).

Proof. (1) Each basic swap is irreducible in σ. Hence by Proposition 2.2 of
[3], min(∆(S)) ≤ gcd(N). For the reverse direction, note that ni − ni−1 =
(bi − ai)b1 · · · bi−1ai+1 · · · ap, so gcd(N)| gcd({ni − ni−1 : i ∈ [1, p]}), which
equals min(∆(S)) by Proposition 2.10 of [3].
(2) The elements of N correspond to factorization length changes in Betti ele-
ments, which must be in ∆(S).
(3) By Theorem 2.5 of [6], the largest element of ∆(S) arises from a factorization
length change of a Betti element.

In certain cases, Theorem 19 determines ∆(S) completely. In particular, the
geometric sequence case is settled since that restriction implies |N | = 1.

Corollary 20. Let S = 〈n0, . . . , np〉 be an NSCS. Set N = {b1 − a1, b2 −
a2, . . . , bn − an}. Suppose that any of the following hold:

1. |N | = 1, or

2. |N | > 1 and for some α ∈ N, N = {α, 2α, . . . , |N |α}, or

3. |N | > 1 and for some α ∈ N, N = {2α, 3α, . . . , (|N |+ 1)α},

Then ∆(S) is completely determined. In the first two cases, ∆(S) = N ; in the
last case ∆(S) = N ∪ {α}.

For example, consider the NSCS given by a1 = a2 = 7, b1 = 17, b2 = 22,
i.e. S = 〈49, 119, 374〉. We have N = {10, 15}, so applying Corollary 20 gives
∆(S) = {5, 10, 15}.

Beyond Corollary 20, more work is needed to determine ∆(S). For example,
the NSCS S = 〈4, 14, 63〉 given by a1 = a2 = 2, b1 = 7, b2 = 9 has N = {5, 7}.
Applying Theorem 19 gives us {1, 5, 7} ⊆ ∆(S), while a computation with the
GAP numericalsgps package (see [9]) shows that ∆(S) = {1, 2, 3, 5, 7}.

Lastly, we consider the tame degree t(S). We now prove two lower bounds
for t(S). They arise by considering the smallest rp such that rpapnp − n0 ∈ S,
and the smallest s1 such that s1b1n0 − np ∈ S.
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Theorem 21. Let S = 〈n0, . . . , np〉 be an NSCS. Set r1 = 1 and ri = dai−1ri−1

bi
e

for i ∈ [2, p]. Set sp = 1, si−1 = d bisiai−1
e for i ∈ [2, p]. Then

t(S) ≥ max{(b1 − a1)r1 + (b2 − a2)r2 + · · ·+ (bp−1 − ap−1)rp−1 + bprp, b1s1}.

Proof. For the first bound, we set n = aprpnp and z = aprpep ∈ φ−1(n). We
now set u = (b1r1, b2r2 − a1r1, b3r3 − a2r2, . . . , bprp − ap−1rp−1, 0). Note the
left-first basic chain

u→ r1δ2· · · → (0, b2r2, b3r3 − a2r2, . . . , bprp − ap−1rp−1, 0)→ r2δ3· · · →

→ (0, 0, b3r3, . . . , bprp − ap−1rp−1, 0)→ · · · → bprpep−1 →
rpδp· · · → z.

In particular u ∈ φ−10 (n). Note that each w ∈ φ−10 (n) has |w| > |z| and hence
d(w, z) = |w|. We will now show by way of Corollary 14 that |u| ≤ |w| for all
w ∈ φ−10 (n). First, by Lemma 5, w0 ≥ b1r1 = u0. Now, for all i ∈ [1, p− 1] we
must have ui < bi+1 since otherwise bi+1d airibi+1

e − airi ≥ bi+1, a contradiction.

Hence u − b1r1e1 is a p-normal factorization. By Corollary 14, |u − b1r1e0| ≤
|w − b1r1e0| and hence |u| ≤ |w|. Therefore t0(n) ≥ d(z, φ−10 (n)) = d(z, u) =
|u| = (b1 − a1)r1 + (b2 − a2)r2 + · · ·+ (bp−1 − ap−1)rp−1 + bprp.

For the second bound, we set n = b1s1n0 and z = b1s1e0 ∈ φ−1(n). We
now set u = (0, a1s1 − b2s2, a2s2 − b3s3, . . . , ap−1sp−1 − bpsp, apsp). Note the
right-first basic chain

u→
spδ
′
p· · · → (0, a1s1 − b2s2, a2s2 − b3s3, . . . , ap−1sp−1, 0)→ · · · →

→ a1s1e1 →
s1δ
′
1· · · → z.

In particular u ∈ φ−1p (n). Note that, by Corollary 14, each w ∈ φ−1(n) has
|w| ≤ |z|. First, by Lemma 5, wp ≥ apsp = up. For all i ∈ [1, p − 1] we must

have ui < ai since otherwise aid bi+1si+1

ai
e−bi+1si+1 ≥ ai, a contradiction. Hence

u− apspep is a 0-normal factorization. We apply Corollary 13 to conclude that
since u0 = 0, also w′0 = 0 for all w′ ∈ φ−1(n− apspnp). Therefore w0 = 0 for all
w ∈ φ−1i (n), and hence d(z, φ−1i (n)) = |z| = b1s1, as desired.

We have no examples where this inequality is strict. The following examples
show that both parts of the bound are necessary. For S = 〈165, 176, 208〉,
we compute t(S) = 27 while Theorem 21 gives t(S) ≥ max{27, 16}. For
S = 〈165, 195, 208〉, we compute t(S) = 26 while Theorem 21 gives t(S) ≥
max{18, 26}.
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