Math 254 Exam 11 Solutions

1. Carefully state the definition of "linear mapping". Give two examples, each from \mathbb{R}^{2} to $P_{2}(t)$.

A linear mapping is a function $f: V \rightarrow W$ between two vector spaces, that satisfies $f(u+v)=$ $f(u)+f(v)$ and $f(k u)=k f(u)$ for all vectors u, v and all scalars k. Many examples are possible, such as $f(a, b)=a t^{2}+b t, g(a, b)=0, h(a, b)=b t+3 b$.
The remaining problems all concern the matrix $A=\left[\begin{array}{rrr}3 & 1 & -5 \\ -1 & 1 & 1 \\ 0 & 0 & -2\end{array}\right]$.
2. Find the characteristic polynomial $\Delta(t)$ of A.

We calculate $|t I-A|=\left|\begin{array}{ccc}t-3 & -1 & 5 \\ 1 & t-1 & -1 \\ 0 & 0 & t+2\end{array}\right|$. Expanding on the last row, $|t I-A|=(t+2)(-1)^{6}\left|\begin{array}{cc}t-3 & -1 \\ 1 & t-1\end{array}\right|=$ $(t+2)[(t-3)(t-1)+1]=(t+2)\left[t^{2}-4 t+3+1\right]=(t+2)(t-2)^{2}=t^{3}-2 t^{2}-4 t+8$.
3. Find all the eigenvalues of A. What are their algebraic multiplicities?

If we calculated $\Delta(t)$ as $(t+2)(t-2)^{2}$, it is easy to see that $\lambda=-2, \lambda=2$ are the two eigenvalues, with algebraic multiplicities 1,2 respectively. If we calculated $\Delta(t)$ using a formula, or multiplied it out, we would first need to factor it.
4. For each eigenvalue of A, find a maximal independent set of eigenvectors.

For $\lambda=-2$, we seek the nullspace of $A-\lambda I=\left[\begin{array}{rrr}5 & 1 & -5 \\ -1 & 3 & 1 \\ 0 & 0 & 0\end{array}\right]$. We put in row echelon form as $R 1=R 1+5 R 2, R 2 \leftrightarrow R 1$, getting $\left[\begin{array}{ccc}-1 & 3 & 1 \\ 0 & 16 & 0 \\ 0 & 0 & 0\end{array}\right]$. Since this has two pivots, the nullspace (i.e. the eigenspace of $\lambda=-2$) has dimension 1 . We may choose any nonzero vector from the nullspace, such as $(1,0,1)$.

For $\lambda=2$, we seek the nullspace of $A-\lambda I=\left[\begin{array}{ccc}1 & 1 & -5 \\ -1 & -1 & 1 \\ 0 & 0 & -4\end{array}\right]$. We put in row echelon form as $R 1=R 1+R 2, R 3=R 3-R 2$, getting $\left[\begin{array}{rrr}-1 & 1 & -5 \\ 0 & 0 & -4 \\ 0 & 0 & 0\end{array}\right]$. Since this has two pivots, the nullspace (i.e. the eigenspace of $\lambda=2$) has dimension 1 . We may choose any nonzero vector from the nullspace, such as $(1,-1,0)$.

5 . Find the minimal polynomial $m(t)$ of A. Is A diagonalizable?
We must have either $m(t)=(t+2)(t-2)$ or $m(t)=(t+2)(t-2)^{2}=\Delta(t)$.
Method 1: If $m(t)=(t+2)(t-2)=t^{2}-4$, then $A^{2}-4 I=0$. We calculate $A^{2}-4 I=$ $\left[\begin{array}{rrr}3 & 1 & -5 \\ -1 & 1 & 1 \\ 0 & 0 & -2\end{array}\right]\left[\begin{array}{rrr}3 & 1 & -5 \\ -1 & 1 & 1 \\ 0 & 0 & -2\end{array}\right]-\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]=\left[\begin{array}{ccc}4 & 4 & -4 \\ -4 & -4 & 4 \\ 0 & 0 & 0\end{array}\right]$. Since this is not the zero matrix, $m(t)$ is not $(t+2)(t-2)$, and hence $m(t)=\Delta(t)$. Also, since $m(t)$ is not the product of distinct linear terms, A is not diagonalizable.

Method 2: A is not diagonalizable, since the algebraic multiplicity of $\lambda=2$ is 2 while the geometric multiplicity is 1 . Hence $m(t)$ cannot be $(t+2)(t-2)$, and hence $m(t)=\Delta(t)$.

