Math 254 Exam 3 Solutions

1. Carefully state the definition of "dependent". Give two examples, each from \mathbb{R}^{5}.

A set of vectors is dependent if a nondegenerate linear combination yields the zero vector. Many examples are possible, such as $\{(0,0,0,0,0)\}$ or $\{((0,0,0,1,0),(0,0,0,2,0)\}$.
2. Suppose that A is a square matrix. Prove that
(a) if A is invertible, then A^{T} is invertible; and
(b) if A^{T} is invertible, then A is invertible.
(a) If A is invertible, then there is some matrix B with $A B=I$. Taking transposes, we get $(A B)^{T}=I^{T}=I$, but $B^{T} A^{T}=(A B)^{T}$. Hence A^{T} is invertible, with inverse B^{T}.
(b) If A^{T} is invertible, we apply part (a) to conclude that $\left(A^{T}\right)^{T}$ is invertible, but that is just A again.
ALTERNATE, BORING, SOLUTION for (b): Just repeat (a). If A^{T} is invertible, then there is some matrix B with $A^{T} B=I$. Taking transposes, we get $\left(A^{T} B\right)^{T}=I^{T}=I$, but $\left(A^{T} B\right)^{T}=B^{T}\left(A^{T}\right)^{T}=B^{T} A$. Hence A is invertible, with inverse B^{T}.
ALTERNATE SOLUTION for (a): If A is invertible, then by Thm 3.7 in the text, $A=$ $E_{1} E_{2} \cdots E_{k}$, a product of elementary row matrices. But then $A^{T}=\left(E_{1} E_{2} \cdots E_{k}\right)^{T}=$ $E_{k}^{T} \cdots E_{2}^{T} E_{1}^{T}$, which is again a product of elementary row matrices and is thus invertible by Thm 3.7 again.
3. Let $A=\left[\begin{array}{lll}1 & 6 & 1 \\ 4 & 2 & 0 \\ 1 & 0 & 0\end{array}\right]$. Write $A=B+C$, where B is symmetric and C is skew-symmetric.

$$
A^{T}=\left[\begin{array}{lll}
1 & 4 & 1 \\
6 & 2 & 0 \\
1 & 0 & 0
\end{array}\right] \text {, so } B=(1 / 2)\left(A+A^{T}\right)=\left[\begin{array}{lll}
1 & 5 & 1 \\
5 & 2 & 0 \\
1 & 0 & 0
\end{array}\right] \text { and } C=(1 / 2)\left(A-A^{T}\right)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

4. Let $A=\left[\begin{array}{lll}1 & 6 & 1 \\ 4 & 2 & 0 \\ 1 & 0 & 0\end{array}\right]$. Find A^{-1}, if it exists.
$\left[\begin{array}{llllll}1 & 6 & 1 & 1 & 0 & 0 \\ 4 & 2 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 1 \\ 4 & 2 & 0 & 0 & 1 & 0 \\ 1 & 6 & 1 & 1 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & 1 & -4 \\ 0 & 6 & 1 & 1 & 0 & -1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & 1 & -4 \\ 0 & 0 & 1 & 1 & -3 & 11\end{array}\right] \rightarrow\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 / 2 & -2 \\ 0 & 0 & 1 & 1 & -3 & 11\end{array}\right]$.
$\left\{R_{1} \leftrightarrow R_{3}\right\},\left\{-4 R_{1}+R_{2} \rightarrow R_{2},-R_{1}+R_{3} \rightarrow R_{3}\right\},\left\{-3 R_{3}+R_{3} \rightarrow R_{3}\right\},\left\{(1 / 2) R_{2} \rightarrow R_{2}\right\}$. Hence $A^{-1}=\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 / 2 & -2 \\ 1 & -3 & 11\end{array}\right]$.
5. Let $B=\left[\begin{array}{cc}-2 & -1 \\ 4 & 3\end{array}\right]$. Find the LU factorization of B.

To make B upper triangular, we multiply by elementary matrix $E=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$, i.e. $E B=$ $\left[\begin{array}{cc}-2 & -1 \\ 0 & 1\end{array}\right]=U$. Hence $E^{-1} E B=E^{-1} U$, so we take $L=E^{-1}=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]$, and $B=L U$.
ALTERNATE SOLUTION: Using the ideas from section 3.9 in the book, we have just one multiplier $m_{21}=2$, after which $U=\left[\begin{array}{cc}-2 & -1 \\ 0 & 1\end{array}\right]$ and $L=\left[\begin{array}{cc}1 & 0 \\ -m_{21} & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]$.

