Math 254 Exam 4 Solutions

1. Carefully state the definition of "subspace". Give two examples, each from \mathbb{R}^{2}.

A subspace is a subset of a vector space that is, itself, a vector space. Many examples are possible, such as $\{(0,0)\}$ (zero-dimensional), $\operatorname{Span}(S)$ for $S=\{(1,2)\}$ (one-dimensional), or \mathbb{R}^{2} itself (two-dimensional).
2. Carefully state any five of the eight vector space axioms.

These are listed on p. 152 of the text. It is not important how you number them; however it is important that you give the English text correctly. "For any vectors u, v, w in V, $(u+v)+w=u+(v+w)$." is correct, but the equation " $(u+v)+w=u+(v+w)$ " alone is incorrect.
3. Let $S=\{f(x): f(3)=1\} \subseteq \mathbb{R}[x]$ be the set of all polynomials $f(x)$ satisfying $f(3)=1$. Determine, with justification, whether this is a vector space.

Since S is a subset of a vector space, to be a subspace S must satisfy three properties. It must contain the zero vector, it must be closed under vector addition, and closed under scalar multiplication. S satisfies none of these three properties, and it's enough to pick your favorite to disprove. Just for fun, I will disprove all three: (1) $f(x)=0$ does not satisfy $f(3)=1$, so 0 is not in $S ;(2) f(x)=1$ and $g(x)=x / 3$ are both in S, but $(f+g)(x)=1+x / 3$ is not in S since $(f+g)(3)=2$; (3) $f(x)=1$ is in S but $5 f(x)=5$ is not in S.
4. Determine, with justification, whether $(1,2)$ is in the rowspace of $M=\left[\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right]$.

The rowspace of M is also the rowspace of $\left[\begin{array}{ll}2 & 3 \\ 0 & 0\end{array}\right]$, obtained via $R_{2}=R_{2}-3 R_{1}$, which is $\operatorname{Span}((2,3))=\{t(2,3): t \in \mathbb{R}\}$. If $(1,2)$ were in this subspace, then for some t we would have $(1,2)=(2 t, 3 t)$, and hence $2 t=1$ and $3 t=2$. This is impossible, so the answer is "no".
5. Set $V=\mathbb{R}^{3}$. Give any two subspaces U_{1}, U_{2} such that $U_{1} \oplus U_{2}=V$.

Two type of solutions are possible. The "trivial" solution is $U_{1}=\{(0,0,0)\}, U_{2}=\mathbb{R}^{3}$ (or the other way around). Otherwise, one of U_{1}, U_{2} will be one-dimensional and the other will be two-dimensional. Many examples are possible, for example $U_{1}=\operatorname{Span}(\{(1,0,0)\})=$ $\{(a, 0,0): a \in \mathbb{R}\}, U_{2}=\operatorname{Span}(\{(0,1,0),(0,0,1)\})=\{(0, b, c): b, c \in \mathbb{R}\}$. What is important is that U_{1}, U_{2} are both subspaces of R^{3}, that $U_{1}+U_{2}=\mathbb{R}^{3}$, and that $U_{1} \cap U_{2}=\{0\}$.

