Math 254 Exam 5 Solutions

1. Carefully state the definition of "independent". Give two examples, each from \mathbb{R}^{3}.

A set of vectors is independent if there is no nondegenerate linear combination yielding the zero vector. Many examples are possible, such as $\{(1,2,3)\}$ or $\{(1,2,3),(1,1,1)\}$.
2. Give any two bases for $M_{2,2}(\mathbb{R})$, the set of 2×2 matrices.

Unfortunately, many students were challenged by this question. A basis is a set of vectors (with certain properties), which in this context is a set of 2×2 matrices. Anything that is NOT a set of matrices cannot possibly be a basis of this vector space.
Since this space is 4-dimensional, each basis must contain four matrices, that are linearly independent and spanning. Many examples are possible, such as $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ (the standard basis), or $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$, or $\left\{\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)\right\}$.
The following problems are all in \mathbb{R}^{4}, and concern the subspaces $S=\{(a, b-4 a, c-2 a, a): a, b, c \in \mathbb{R}\}$ and $T=\operatorname{Span}(\{(1,-4,-2,1),(1,-3,-1,2),(3,-8,-2,7)\})$.
3. Find a basis for S, and a basis for T.
S is at most three dimensional since there are three free variables, so we try to find three linearly independent elements of S. We try $a=1, b=c=0$ for $(1,-4,-2,1) ; b=1, a=c=0$ for $(0,1,0,0) ; c=1, a=b=0$ for $(0,0,1,0)$. These three vectors, placed as rows into a matrix, are already in echelon form, so are independent and hence a basis of S. For T, we calculate row echelon form for $\left(\begin{array}{llll}1 & -4 & -2 & 1 \\ 1 & -3 & -1 & 2 \\ 3 & -8 & -2 & 7\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & -4 & -2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 4 & 4 & 4\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & -4 & -2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$ so a basis is $\{(1,-4,-2,1),(0,1,1,1)\}$.
Note: Unfortunately, some students had trouble with $S . S$ is a set of infinitely many vectors (for each possible value of $a, b, c)$. It is equivalent to $\{a(1,-4,-2,1)+b(0,1,0,0)+c(0,0,1,0)$: $a, b, c \in \mathbb{R}\}=\operatorname{Span}(\{(1,-4,-2,1),(0,1,0,0),(0,0,1,0)\})$. Writing S in this way is not necessary, but perhaps may be helpful for anyone still confused.
4. Find a basis for $S+T$.

We put the five basis vectors (or the basis for S together with the three spanning T) together, then find the row echelon form. $\left(\begin{array}{cccc}1 & -4 & -2 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & -4 & -2 & 1 \\ 0 & 1 & 1 & 1\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & -4 & -2 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & -4 & -2 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. Hence, one possible basis for $S+T$ is given by $\{(1,-4,-2,1),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}$. Of course, this is in \mathbb{R}^{4}, so $S+T=\mathbb{R}^{4}$ since they are each 4-dimensional, so any basis of \mathbb{R}^{4} will do, such as the standard basis.
5. Find $\operatorname{dim}(S \cap T)$ and find a basis for $S \cap T$.

We have $\operatorname{dim}(S+T)+\operatorname{dim}(S \cap T)=\operatorname{dim}(S)+\operatorname{dim}(T)$. From the earlier problems, we have $4+\operatorname{dim}(S \cap T)=3+2$, so $\operatorname{dim}(S \cap T)=1$. By inspection, we see that $(1,-4,-2,1)$ is in both S and T, so $\{(1,-4,-2,1)\}$ is a basis for $S \cap T$.

