Math 254 Exam 6 Solutions

1. Carefully state the definition of "basis". Give two examples, each from \mathbb{R}^{1}.

A set of vectors is a basis if it is spanning and linearly independent. Every nonzero vector from \mathbb{R}^{1}, in a set by itself, is a basis. e.g. $\{(1)\},\{(3)\},\{(-\pi)\}$. Note that " 3 " is not a vector, and "(3)" is a vector, but not a set of vectors; neither of these is a basis.
2. Consider the vector space $\mathbb{R}[x, y]$ of polynomials in x, y. Let V be the subspace generated by basis $\left\{1, x, y, x^{2}, x y, y^{2}\right\}$. Set $S=\left\{(x+1)^{2},(y-1)^{2},(x+1)(y-1),(x+y)^{2}\right\}$. Determine if S is linearly independent.

We must choose some order the basis of V, e.g. $v_{1}=1, v_{2}=x, v_{3}=y, v_{4}=x^{2}, v_{5}=$ $x y, v_{6}=y^{2}$. Then, $s_{1}=x^{2}+2 x+1=v_{1}+2 v_{2}+v_{4}, s_{2}=y^{2}-2 y+1=v_{1}-2 v_{3}+v_{6}, s_{3}=$ $x y+y-x-1=-v_{1}-v_{2}+v_{3}+v_{5}, s_{4}=x^{2}+2 x y+y^{2}=v_{4}+2 v_{5}+v_{6}$. We now put these in either rows or columns (our choice), and do row reduction. $\left[\begin{array}{cccccc}1 & 2 & 0 & 1 & 0 & 0 \\ 1 & 0 & -2 & 0 & 0 \\ -1 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1\end{array}\right] \rightarrow$ $\left[\begin{array}{cccccc}1 & 2 & 0 & 1 & 0 & 0 \\ 0 & -2 & -2 & -1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & -2 & -2 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1\end{array}\right] \rightarrow\left[\begin{array}{llllll}1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1\end{array}\right] \rightarrow\left[\begin{array}{llllll}1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$. Since there are three pivots but $|S|=4, S$ is linearly dependent.
3. In the vector space \mathbb{R}^{2}, set $S=\{(2,3),(5,7)\}$, a basis. Find the change-of-basis matrix from the standard basis to S, and use this matrix to find $[(7,10)]_{S}$.

We have $P_{E S}=\left(\begin{array}{cc}2 & 5 \\ 3 & 7\end{array}\right)$, but we want $P_{S E}=P_{E S}^{-1}=\left(\begin{array}{cc}-7 & 5 \\ 3 & -2\end{array}\right)$, which we can either calculate or remember the formula for. $[(7,10)]_{S}=P_{S E}[(7,10)]_{E}=\left(\begin{array}{cc}-7 & 5 \\ 3 & -2\end{array}\right)\binom{7}{10}=\binom{1}{1}$.
4. In the vector space \mathbb{R}^{3}, set $S=\{(2,3,1),(0,1,2),(3,4,0)\}$, a basis. Find the change-of-basis matrix from the standard basis to S, and use this matrix to find $[(7,11,3)]_{S}$.

5. In the vector space $M_{2,2}(\mathbb{R})$, the set of 2×2 matrices, set $A=\left(\begin{array}{cc}2 & 0 \\ -3 & 1\end{array}\right), B=\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right), C=\left(\begin{array}{cc}4 & -2 \\ -9 & 5\end{array}\right)$. Set $S=\operatorname{Span}\{A, B, C\}$. Find the dimension of S, and a basis.

We must first choose an order for the standard basis for $M_{2,2}$. I choose $e_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right), e_{2}=$ $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), e_{3}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), e_{4}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. We now put A, B, C in terms of E, as either rows or columns (our choice), and do row reduction.

Rows: $\left[\begin{array}{cccc}2 & 0 & -3 & 1 \\ 1 & 1 & 0 & -1 \\ 4 & -2 & -9 & 5\end{array}\right] \rightarrow\left[\begin{array}{cccc}0 & -2 & -3 & 3 \\ 1 & 1 & 0 & -1 \\ 0 & -6 & -9 & 9\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 1 & 0 & -1 \\ 0 & -2 & -3 & 3 \\ 0 & -6 & -9 & 9\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 1 & 0 & -1 \\ 0 & -2 & -3 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$. Hence $\operatorname{dim}(S)=2$ and a basis for S is given by the nonzero rows, namely $\left\{\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}0 & -2 \\ -3 & 3\end{array}\right)\right\}$.

Columns: $\left[\begin{array}{ccc}2 & 1 & 4 \\ 0 & 1 & -2 \\ -3 & 0 & -9 \\ 1 & -1 & 5\end{array}\right] \rightarrow\left[\begin{array}{ccc}0 & 3 & -6 \\ 0 & 1 & -2 \\ 0 & -3 & 6 \\ 1 & -1 & 5\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & -1 & 5 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. Hence $\operatorname{dim}(S)=2$. Since the pivots are in columns 1,2 , a basis for S is given by the first and second elements of S, namely $\{A, B\}$.

