Math 254 Exam 7 Solutions

1. Carefully state the definition of "linearly dependent". Give two examples, each from $M_{2,2}$.

A set of vectors is linearly dependent if there is some nondegenerate linear combination yielding the zero vector. Many examples are possible, such as $\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\right\},\left\{\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}2 & 2 \\ 2 & 0\end{array}\right)\right\}$, $\left\{\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\right\}$. (note that $\left.\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)-\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)+\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right).\right)$
2. Let $u=(0,-4,3)$, a vector in \mathbb{R}^{3}. Find $\|u\|_{1},\|u\|_{2},\|u\|_{3},\|u\|_{\infty}$.

$$
\begin{aligned}
& \|u\|_{2}=\sqrt{0^{2}+(-4)^{2}+(3)^{2}}=\sqrt{25}=5 . \quad\|u\|_{3}=\sqrt[3]{|0|^{3}+|-4|^{3}+|3|^{3}}=\sqrt[3]{91} . \quad\|u\|_{\infty}= \\
& \max \{|0|,|-4|,|3|\}=4 .\|u\|_{1}=|0|+|-4|+|3|=7 .
\end{aligned}
$$

The remaining questions concern vector space $V=P_{2}(x)[0,1]$, the set of polynomials of degree at most 2 on interval $[0,1]$, with inner product given by $\langle u, v\rangle=\int_{0}^{1} u(x) v(x) d x$. Set $f(x)=2, g(x)=3 x$.
3. Find the angle between $f(x), g(x)$.

$$
\begin{aligned}
& \|f\|^{2}=<f(x), f(x)>=\int_{0}^{1} 4 d x=\left.4 x\right|_{0} ^{1}=4-0=4, \text { so }\|f\|=2 . \\
& \|g\|^{2}=<g(x), g(x)>=\int_{0}^{1} 9 x^{2} d x=\left.3 x^{3}\right|_{0} ^{1}=3-0=3, \text { so }\|g\|=\sqrt{3} . \\
& <f(x), g(x)>=\int_{0}^{1} 6 x d x=\left.3 x^{2}\right|_{0} ^{1}=3-0=3 .
\end{aligned}
$$

Hence $\cos \theta=\frac{3}{2 \sqrt{3}}=\frac{\sqrt{3}}{2}$, so $\theta=\pi / 6=30^{\circ}$.
4. Use the Gram-Schmidt process to find an orthogonal basis for the space $\operatorname{Span}(\{f(x), g(x)\})$.

We start with $u_{1}=f(x)$. Then (reusing the calculations from problem 3), $u_{2}=g(x)-$ $\operatorname{proj}\left(g(x), u_{1}(x)\right)=g(x)-\frac{\left\langle g(x), u_{1}(x)\right\rangle}{\left\langle u_{1}(x), u_{1}(x)\right\rangle} u_{1}(x)=g(x)-\frac{\langle g(x), f(x)\rangle}{\langle f(x), f(x)\rangle} f(x)=3 x-\frac{3}{4} 2=3 x-3 / 2$. Hence the desired orthogonal basis is $\{2,3 x-1.5\}$.
5. Find a basis for $\operatorname{Span}(\{f(x)\})^{\perp}$.

Since V is 3-dimensional, and $\operatorname{Span}(\{f(x)\})$ is 1-dimensional, $\operatorname{Span}(\{f(x)\})^{\perp}$ is 2-dimensional. Hence we need to find any two linearly independent vectors in $\operatorname{Span}(\{f(x)\})^{\perp}$; that is, we need to find any two linearly independent vectors, each orthogonal to $f(x)$.

Method 1: We already have one, from problem 4, namely $3 x-1.5$. We need to find another. Let's start anywhere, say with $h(x)=x^{2}$, and calculate $<h(x), f(x)>=\int_{0}^{1} 2 x^{2} d x=$ $2 /\left.3 x^{3}\right|_{0} ^{1}=2 / 3-0=2 / 3$. Hence we have $h(x)-\operatorname{proj}(h(x), f(x))=h(x)-\frac{\langle h(x), f(x)\rangle}{\langle f(x), f(x)\rangle} f(x)=$ $x^{2}-\frac{2 / 3}{4} 2=x^{2}-1 / 3$. This is linearly independent with $3 x-1.5$, hence $\left\{3 x-3 / 2, x^{2}-1 / 3\right\}$ is a desired basis.

Method 2: Let's find the general form of a vector orthogonal to f. Consider $h(x)=a+b x+$ $c x^{2}$, and take $<h(x), f(x)>=\int_{0}^{1} 2 a+2 b x+2 c x^{2} d x=2 a x+b x^{2}+\left.(2 / 3) c x^{3}\right|_{0} ^{1}=2 a+b+(2 / 3) c$. For h, f to be orthogonal, we must have $2 a+b+(2 / 3) c=0$. We may now make any choices for a, b, c to satisfy this linear equation, e.g. $a=1, b=-2$ (giving $h(x)=1-2 x), c=3, b=-2$ (giving $h(x)=-2 x+3 x^{2}$). So $\left\{1-2 x,-2 x+3 x^{2}\right\}$ is a basis.

