Math 254 Exam 9 Solutions

1. Carefully state the definition of "spanning". Give two examples, each from $P_2(t)$.

A set of vectors is spanning if every vector in the vector space may be achieved as a linear combination of vectors from this set. Many examples are possible, such as $\{1, t, t^2\}, \{1, 2t, 3t^2\}, \{1, t, t^2, t + t^2\}, \{1, t + 1, t^2 + 1\}$.

2. Consider the basis $S = \{(-1, -2), (2, 5)\}$ of \mathbb{R}^2 , and the linear operator F(x, y) = (-2x + 2y, -10x + 7y). Find the matrix representation $[F]_S$.

We have
$$P_{ES} = \begin{pmatrix} -1 & 2 \\ -2 & 5 \end{pmatrix}$$
, so $P_{SE} = P_{ES}^{-1} = \begin{pmatrix} -5 & 2 \\ -2 & 1 \end{pmatrix}$. We calculate $[F]_E = ([F(e_1)]_E[F(e_2)]_E) = ([(-2, -10)]_E[(2, 7)]_E) = \begin{pmatrix} -2 & 2 \\ -10 & 7 \end{pmatrix}$. Hence $[F]_S = P_{SE}[F]_E P_{ES} = \begin{pmatrix} -5 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2 \\ -2 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

3. Prove that, for all square matrices A, that A must be similar to A.

Set P = I, the identity matrix. We have $P^{-1} = P = I$. Now, $A = IAI = P^{-1}AP$, so A is similar to A.

4. Let V be the vector space of functions that have as a basis $S = \{e^t, te^t, t^2e^t\}$. Find the matrix representation $[\frac{d}{dt}]_S$.

We first calculate, using the product rule, $\frac{d}{dt}(e^t) = e^t$, $\frac{d}{dt}(te^t) = te^t + e^t$, $\frac{d}{dt}(t^2e^t) = t^2e^t + 2te^t$. Hence $[\frac{d}{dt}]_S = ([e^t]_S[te^t + e^t]_S[t^2e^t + 2te^t]_S) = \begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 2\\ 0 & 0 & 1 \end{pmatrix}$.

5. Set $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, and $B = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$. Prove that A is not similar to B.

Solution 1: We use the theorem that if A is similar to B then the determinant and trace of A, B must be the same. If either one disagrees on A, B, then A is not similar to B. As it happens, both disagree, so either choice will work. Determinant: $det(A) = 1 \cdot 2 - 1 \cdot 1 = 1$, while $det(B) = 1 \cdot 1 - 1 \cdot (-1) = 2$, so A is not similar to B. Trace: trace(A) = 1 + 2 = 3, while trace(B) = 1 + 1 = 2, so A is not similar to B.

Solution 2: Suppose A is similar to B. Then there exists some P with $A = P^{-1}BP$, and we multiply by P to get PA = BP (this step isn't necessary, but it saves us finding P^{-1}). Set $P = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, so $PA = \begin{bmatrix} a+b & a+2b \\ c+d & c+2d \end{bmatrix}$ and $BP = \begin{bmatrix} a-c & b-d \\ a+c & b+d \end{bmatrix}$. Setting these equal, we get a + b = a - c, a + 2b = b - d, c + d = a + c, c + 2d = b + d. The first equation gives b = -c, while the third gives a = d. Plugging into the second equation gives c = 2a. Plugging all this into the last equation gives a = 0. But $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ isn't invertible, so A couldn't have been similar to B.