Math 254 Exam 9 Solutions

1. Carefully state the definition of "spanning". Give two examples, each from $P_{2}(t)$.

A set of vectors is spanning if every vector in the vector space may be achieved as a linear combination of vectors from this set. Many examples are possible, such as $\left\{1, t, t^{2}\right\},\left\{1,2 t, 3 t^{2}\right\},\left\{1, t, t^{2}, t+t^{2}\right\},\left\{1, t+1, t^{2}+1\right\}$.
2. Consider the basis $S=\{(-1,-2),(2,5)\}$ of \mathbb{R}^{2}, and the linear operator $F(x, y)=$ $(-2 x+2 y,-10 x+7 y)$. Find the matrix representation $[F]_{S}$.

We have $P_{E S}=\left(\begin{array}{ll}-1 & 2 \\ -2 & 5\end{array}\right)$, so $P_{S E}=P_{E S}^{-1}=\left(\begin{array}{ll}-5 & 2 \\ -2 & 1\end{array}\right)$. We calculate $[F]_{E}=$ $\left(\left[F\left(e_{1}\right)\right]_{E}\left[F\left(e_{2}\right)\right]_{E}\right)=\left([(-2,-10)]_{E}[(2,7)]_{E}\right)=\left(\begin{array}{cc}-2 & 2 \\ -10 & 7\end{array}\right)$. Hence $[F]_{S}=P_{S E}[F]_{E} P_{E S}=$ $\left(\begin{array}{ll}-5 & 2 \\ -2 & 1\end{array}\right)\left(\begin{array}{ll}-2 & 2 \\ -10 & 7\end{array}\right)\left(\begin{array}{ll}-1 & 2 \\ -2 & 5\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$.
3. Prove that, for all square matrices A, that A must be similar to A.

Set $P=I$, the identity matrix. We have $P^{-1}=P=I$. Now, $A=I A I=$ $P^{-1} A P$, so A is similar to A.
4. Let V be the vector space of functions that have as a basis $S=\left\{e^{t}, t e^{t}, t^{2} e^{t}\right\}$. Find the matrix representation $\left[\frac{d}{d t}\right]_{S}$.

We first calculate, using the product rule, $\frac{d}{d t}\left(e^{t}\right)=e^{t}, \frac{d}{d t}\left(t e^{t}\right)=t e^{t}+e^{t}, \frac{d}{d t}\left(t^{2} e^{t}\right)=$ $t^{2} e^{t}+2 t e^{t}$. Hence $\left[\frac{d}{d t}\right]_{S}=\left(\left[e^{t}\right]_{S}\left[t e^{t}+e^{t}\right]_{S}\left[t^{2} e^{t}+2 t e^{t}\right]_{S}\right)=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$.
5. Set $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$, and $B=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$. Prove that A is not similar to B.

Solution 1: We use the theorem that if A is similar to B then the determinant and trace of A, B must be the same. If either one disagrees on A, B, then A is not similar to B. As it happens, both disagree, so either choice will work. Determinant: $\operatorname{det}(A)=1 \cdot 2-1 \cdot 1=1$, while $\operatorname{det}(B)=1 \cdot 1-1 \cdot(-1)=2$, so A is not similar to B. Trace: $\operatorname{trace}(A)=1+2=3$, while $\operatorname{trace}(B)=1+1=2$, so A is not similar to B.

Solution 2: Suppose A is similar to B. Then there exists some P with $A=$ $P^{-1} B P$, and we multiply by P to get $P A=B P$ (this step isn't necessary, but it saves us finding P^{-1}). Set $P=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]$, so $P A=\left[\begin{array}{cc}a+b & a+2 b \\ c+d & c+2 d\end{array}\right]$ and $B P=$ $\left[\begin{array}{cc}a-c & b-d \\ a+c & b+d\end{array}\right]$. Setting these equal, we get $a+b=a-c, a+2 b=b-d, c+d=$ $a+c, c+2 d=b+d$. The first equation gives $b=-c$, while the third gives $a=d$. Plugging into the second equation gives $c=2 a$. Plugging all this into the last equation gives $a=0$. But $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ isn't invertible, so A couldn't have been similar to B.

