Math 254 Fall 2012 Exam 1 Solutions

1. Carefully state the definition of "spanning". Give two examples in \mathbb{R}^{2}.

A set of vectors is spanning if every vector may be obtained as a linear combination of this set. Many examples are possible, such as $\{(1,0),(0,1)\},\{(1,0),(0,1),(1,1)\}$, $\{(1,0),(1,1)\},\{(1,0),(0,1),(0,0)\}$. All correct examples are (correctly chosen) sets of vectors from \mathbb{R}^{2}.
2. Let $u=[12-6789]$, $v=\left[\begin{array}{lll}4 & 67\end{array}\right]$. For each of the following, determine what type they are (undefined, scalar, matrix/vector). If a matrix/vector, specify the dimensions.

```
\(u v^{T}: 1 \times 1\) matrix, or a scalar
\(u^{T} v: 4 \times 4\) matrix
\(\left(u^{T}+v^{T}\right)^{T}: 1 \times 4\) matrix, or a row vector
\((u \cdot v) \cdot u\) : undefined
\((u \times v) \times u\) : undefined
```

3. Let $u=(-2,-3,-4), v=(1,2,-2)$. Determine, with justification, whether these vectors (in \mathbb{R}^{3}) are orthogonal.
$u \cdot v=-2-6+8=0$, so u, v are orthogonal.
4. Let $A=\left[\begin{array}{ccc}0 & 1 & 1 \\ -1 & -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 4 \\ 0 & -1 \\ -1 & 2\end{array}\right]$. Calculate $A B$ and $B A$.
$A B=\left[\begin{array}{cc}-1 & 1 \\ -5 & 1\end{array}\right] . B A=\left[\begin{array}{ccc}-4 & -1 & 11 \\ -2 & 1 & -2 \\ -3 & 3\end{array}\right]$.
5. Let $u=(1,-1,2), v=(0,3,1)$. Calculate $u \times v$ and $v \cdot(u \times v)$.

We first calculate $u \times v$.
Method 1: $(\hat{i}-\hat{j}+2 \hat{k}) \times(3 \hat{j}+\hat{k})=3(\hat{i} \times \hat{j})+(\hat{i} \times \hat{k})-3(\hat{j} \times \hat{j})-(\hat{j} \times \hat{k})+6(\hat{k} \times$ $\hat{j})+2(\hat{k} \times \hat{k})=3 \hat{k}-\hat{j}-\hat{i}-6 \hat{i}=(-7,-1,3)$.
Method 2: $\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 0 & 1 & 1\end{array}\right|=\hat{i}(-1-6)-\hat{j}(1-0)+\hat{k}(3-0)=(-7,-1,3)$.
We now calculate $v \cdot(u \times v)$.
Method 1: $v \cdot(u \times v)=(0,3,1) \cdot(-7,-1,3)=0-3+3=0$.
Method 2: This is the triple product, which gives the (signed) volume of the parallelepiped formed by the vectors v, u, v. However this figure is two-dimensional and has no volume; hence the triple product equals zero.

