Math 254 Fall 2012 Exam 1 Solutions

1. Carefully state the definition of "spanning". Give two examples in \mathbb{R}^2 .

A set of vectors is spanning if every vector may be obtained as a linear combination of this set. Many examples are possible, such as $\{(1,0), (0,1)\}, \{(1,0), (0,1), (1,1)\}, \{(1,0), (0,1), (0,0)\}$. All correct examples are (correctly chosen) sets of vectors from \mathbb{R}^2 .

2. Let u = [12 - 67 89], v = [4567]. For each of the following, determine what type they are (undefined, scalar, matrix/vector). If a matrix/vector, specify the dimensions.

 uv^T : 1 × 1 matrix, or a scalar u^Tv : 4 × 4 matrix $(u^T + v^T)^T$: 1 × 4 matrix, or a row vector $(u \cdot v) \cdot u$: undefined $(u \times v) \times u$: undefined

3. Let u = (-2, -3, -4), v = (1, 2, -2). Determine, with justification, whether these vectors (in \mathbb{R}^3) are orthogonal.

 $u \cdot v = -2 - 6 + 8 = 0$, so u, v are orthogonal.

4. Let $A = \begin{bmatrix} 0 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 4 \\ 0 & -1 \\ -1 & 2 \end{bmatrix}$. Calculate *AB* and *BA*. $AB = \begin{bmatrix} -1 & 1 \\ -5 & 1 \end{bmatrix}$. $BA = \begin{bmatrix} -4 & -1 & 11 \\ 1 & 1 & -2 \\ -2 & -3 & 3 \end{bmatrix}$.

5. Let u = (1, -1, 2), v = (0, 3, 1). Calculate $u \times v$ and $v \cdot (u \times v)$.

We first calculate $u \times v$. Method 1: $(\hat{i} - \hat{j} + 2\hat{k}) \times (3\hat{j} + \hat{k}) = 3(\hat{i} \times \hat{j}) + (\hat{i} \times \hat{k}) - 3(\hat{j} \times \hat{j}) - (\hat{j} \times \hat{k}) + 6(\hat{k} \times \hat{j}) + 2(\hat{k} \times \hat{k}) = 3\hat{k} - \hat{j} - \hat{i} - 6\hat{i} = (-7, -1, 3).$ Method 2: $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 0 & 3 & 1 \end{vmatrix} = \hat{i}(-1 - 6) - \hat{j}(1 - 0) + \hat{k}(3 - 0) = (-7, -1, 3).$ We now calculate $v \cdot (u \times v)$. Method 1: $v \cdot (u \times v) = (0, 3, 1) \cdot (-7, -1, 3) = 0 - 3 + 3 = 0.$

Method 2: This is the triple product, which gives the (signed) volume of the parallelepiped formed by the vectors v, u, v. However this figure is two-dimensional and has no volume; hence the triple product equals zero.