## Math 254 Fall 2012 Exam 10 Solutions

1. Carefully state the definition of "basis". Give two examples for $P_{2}(t)$.
(1) A basis is a set of vectors that is independent and spanning; or (2) A basis is a maximal set of vectors that is independent; or (3) A basis is a minimal set of vectors that is spanning. Many examples are possible: the standard basis is $\left\{1, t, t^{2}\right\}$, but also $\left\{1, t+1, t^{2}+1\right\}$ and $\left\{t+1, t^{2}+1,3 t^{2}+t+1\right\}$.
2. Recall that $M_{2,2}$ denotes the vector space of all $2 \times 2$ matrices. Prove or find a counterexample to the following: $\quad$ For all $A, B \in M_{2,2}, \quad|A+B|=|A|+|B|$.

The statement is false, so we need a counterexample. These are plentiful, such as $A=B=I_{2}$. We have $|A+B|=4$ but $|A|+|B|=2$.

The remaining three problems all concern the matrix $A=\left[\begin{array}{ccc}2 & 2 & 2 \\ -1 & 0 & 2 \\ 4 & 2 & 0\end{array}\right]$.
3. Compute $|A|$ directly, using either determinant formula.

$$
\text { We write }\left[\begin{array}{ccccc}
2 & 2 & 2 & 2 & 2 \\
-1 & 0 & 2 & -1 & 0 \\
4 & 2 & 0 & 4
\end{array}\right] \text {, and calculate }|A|=(2)(0)(0)+(2)(2)(4)+(2)(-1)(2)-
$$ $(4)(0)(2)-(2)(2)(2)-(0)(-1)(2)=0+16-4-0-8-0=4$.

4. Compute $|A|$ by finding the Laplace expansion of the second column.

We have $|A|=(-1)^{1+2}(2)\left|\begin{array}{cc}-1 & 2 \\ 4 & 0\end{array}\right|+(-1)^{2+2}(0)\left|\begin{array}{ll}2 & 2 \\ 4 & 0\end{array}\right|+(-1)^{3+2}(2)\left|\begin{array}{cc}2 & 2 \\ -1 & 2\end{array}\right|=$ $-2(-8)+0(-8)-2(6)=16-12=4$.
5. Compute $|A|$ by first making $A$ triangular with elementary row operations.

Many solutions are possible. For example, $\left[\begin{array}{ccc}2 & 2 & 2 \\ -1 & 0 & 2 \\ 4 & 2 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc}0 & 2 & 6 \\ -1 & 0 & 2 \\ 0 & 2 & 8\end{array}\right]$ via $R_{1} \rightarrow$ $R_{1}+2 R_{2}, R_{3} \rightarrow R_{3}+4 R_{2}$, both of which leave the determinant unchanged. Then, $\left[\begin{array}{ccc}0 & 2 & 6 \\ -1 & 0 & 2 \\ 0 & 2 & 8\end{array}\right] \rightarrow\left[\begin{array}{ccc}0 & 2 & 6 \\ -1 & 0 & 2 \\ 0 & 0 & 2\end{array}\right]$ via $R_{3} \rightarrow R_{3}-R_{1}$, which leaves the determinant unchanged. Lastly, $\left[\begin{array}{ccc}0 & 2 & 6 \\ -1 & 0 & 2 \\ 0 & 0 & 2\end{array}\right] \rightarrow\left[\begin{array}{ccc}-1 & 2 & 2 \\ 0 & 2 & 6 \\ 0 & 0 & 2\end{array}\right]$ via $R_{1} \leftrightarrow R_{2}$, which reverses the sign of the determinant. This last matrix has determinant $(-1)(2)(2)=-4$, so because we changed signs $|A|=4$.

