Math 254 Fall 2012 Exam 11 Solutions

1. Carefully state the definition of "dependent". Give two examples from $P_{2}(t)$.

A set of vectors is dependent if there is a nondegenerate linear combination of them that yields the zero vector. Many examples are possible, such as $\{0\},\{1,3\},\{t, 2 t\},\{1, t, 1+t\},\left\{1, t, t^{2}, 2+3 t+4 t^{2}\right\}$
The remaining problems all concern the matrix $A=\left[\begin{array}{ccc}0 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$.
2. Find the characteristic polynomial $\Delta_{A}(t)$ of A.

We calculate $\Delta_{A}(t)=|t I-A|=\left|\left[\begin{array}{ccc}t & 1 & -1 \\ 0 & t-1 & 0 \\ -1 & 0 & t\end{array}\right]\right|=t^{3}-t^{2}-t+1$.
3. Find all the eigenvalues of A.

We factor $\Delta_{A}(t)=t^{3}-t^{2}-t+1$ as $(t-1)^{2}(t+1)$. Hence the eigenvalues of A are $\lambda=1,-1$.
4. For each eigenvalue of A, find a maximal independent set of eigenvectors.

For $\lambda=1$, we compute $\lambda I-A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1\end{array}\right]$, whose row canonical form is $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$. This has two pivots, hence a one-dimensional nullspace, with basis $\{(1,0,1)\}$. This is the desired maximal independent set of eigenvectors.
For $\lambda=-1$, we compute $\lambda I-A=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 0 & -2 & 0 \\ -1 & 0 & -1\end{array}\right]$, whose row canonical form is $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$. This has two pivots, hence a one-dimensional nullspace, with basis $\{(-1,0,1)\}$. This is the desired maximal independent set of eigenvectors.
5. For each eigenvalue of A, give its algebraic and geometric multiplicity. What is the Jordan form of A ?

Because $\lambda=-1$ is a single root, the algebraic and geometric multiplicities are both 1 . Because $\lambda=1$ is a double root, the algebraic multiplicity is 2 and the geometric multiplicity is either 1 or 2 . By the calculation of problem 4, we see that the geometric multiplicity is actually 1 . Hence A has Jordan form $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ or $\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$.

