Math 254 Fall 2012 Exam 2a Solutions

1. Carefully state the definition of "degenerate" in the context of linear combinations. Give two examples.

A linear combination is degenerate if all its coefficients are zero. Many examples are possible, such as $0, 0x, 0x + 0y, 0x_1 + 0x_2 + 0x_3$.

2. Solve the following system, using back-substitution. Be sure to justify your calculations.

$4x_1 + 3x_2 + 2x_3 + x_4$	=	6
$4x_2 - 2x_3 + x_4$	=	10
$5x_3 + 5x_4$	=	5
$2x_4$	=	8

 $2x_4 = 8$, hence $x_4 = 4$. $5x_3 + 20 = 5$, hence $5x_3 = -15$ and $x_3 = -3$. $4x_2 + 6 + 4 = 10$, hence $4x_2 = 0$ and $x_2 = 0$. $4x_1 + 0 - 6 + 4 = 6$, hence $4x_1 = 8$ and $x_1 = 2$. Combining, there is a unique solution $(x_1, x_2, x_3, x_4) = (2, 0, -3, 4)$.

3. Consider the system of equations $\{3x - 2y = 1, kx + 4y = -2\}$. For which values of k (if any) does this have exactly one solution (and what is it)? For which values of k (if any) does this have no solution? For which values of k (if any) does this have infinitely many solutions?

Replacing Eq.1 by (2 Eq.1+Eq.2), we get (6 + k)x + 0y = 0. If $k \neq -6$, then this implies x = 0; substituting into Eq.2 we get 4y = -2 and y = -0.5. So, for $k \neq -6$, there is exactly one solution: (0, -0.5). However, if k = -6, then we get infinitely many solutions: $(x, \frac{3x-1}{2})$, for every x. 'No solutions' cannot occur, since we have considered all possible values for k.

4. Find the line of best fit for the following set of points: $\{(2,0), (1,-1), (0,4)\}$.

We calculate N = 3, $\sum x_i = 2 + 1 + 0 = 3$, $\sum x_i^2 = 4 + 1 + 0 = 5$, $\sum y_i = 0 - 1 + 4 = 3$, $\sum x_i y_i = 0 - 1 + 0 = -1$. Our system to solve is $\{3b + 3m = 3, 3b + 5m = -1\}$. Eq.2-Eq.1 is 2m = -4, so m = -2. Plugging into Eq.1 we get 3b - 6 = 3, so b = 3. Hence y = -2x + 3 is the desired line.

5. Solve the following system of linear equations using Gaussian elimination and back-substitution.

We begin with Eq.2 \rightarrow Eq.2 + 2 Eq.1, Eq.3 \rightarrow Eq.3 - 3 Eq.1. This gives $\begin{array}{c} 2x + y + 2z = 1\\ 0 + 2y + 7z = 3\\ 0 - 5y - 9z = 1 \end{array}$. We now do Eq.3 \rightarrow 2Eq.3 +5 Eq.2, to get $\begin{array}{c} 2x + y + 2z = 1\\ 0 + 2y + 7z = 3\\ 0 - 5y - 9z = 1 \end{array}$. Now we can do back-substitution: 17z = 17, so z = 1; 2y + 7 = 3, so y = -2; 2x - 2 + 2 = 1, so x = 0.5. Hence there is a unique solution (x, y, z) = (0.5, -2, 1).