Math 254 Fall 2012 Exam 2a Solutions

1. Carefully state the definition of "degenerate" in the context of linear combinations. Give two examples.

A linear combination is degenerate if all its coefficients are zero. Many examples are possible, such as $0,0 x, 0 x+0 y, 0 x_{1}+0 x_{2}+0 x_{3}$.
2. Solve the following system, using back-substitution. Be sure to justify your calculations.

$$
\begin{aligned}
4 x_{1}+3 x_{2}+2 x_{3}+x_{4} & =6 \\
4 x_{2}-2 x_{3}+x_{4} & =10 \\
5 x_{3}+5 x_{4} & =5 \\
2 x_{4} & =8
\end{aligned}
$$

$2 x_{4}=8$, hence $x_{4}=4.5 x_{3}+20=5$, hence $5 x_{3}=-15$ and $x_{3}=-3.4 x_{2}+6+4=$ 10 , hence $4 x_{2}=0$ and $x_{2}=0.4 x_{1}+0-6+4=6$, hence $4 x_{1}=8$ and $x_{1}=2$. Combining, there is a unique solution $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,0,-3,4)$.
3. Consider the system of equations $\{3 x-2 y=1, k x+4 y=-2\}$. For which values of k (if any) does this have exactly one solution (and what is it)? For which values of k (if any) does this have no solution? For which values of k (if any) does this have infinitely many solutions?

Replacing Eq. 1 by (2 Eq. $1+$ Eq. 2), we get $(6+k) x+0 y=0$. If $k \neq-6$, then this implies $x=0$; substituting into Eq. 2 we get $4 y=-2$ and $y=-0.5$. So, for $k \neq-6$, there is exactly one solution: $(0,-0.5)$. However, if $k=-6$, then we get infinitely many solutions: $\left(x, \frac{3 x-1}{2}\right)$, for every x. 'No solutions' cannot occur, since we have considered all possible values for k.
4. Find the line of best fit for the following set of points: $\{(2,0),(1,-1),(0,4)\}$.

We calculate $N=3, \sum x_{i}=2+1+0=3, \sum x_{i}^{2}=4+1+0=5, \sum y_{i}=0-1+4=$ $3, \sum x_{i} y_{i}=0-1+0=-1$. Our system to solve is $\{3 b+3 m=3,3 b+5 m=-1\}$. Eq.2-Eq. 1 is $2 m=-4$, so $m=-2$. Plugging into Eq. 1 we get $3 b-6=3$, so $b=3$. Hence $y=-2 x+3$ is the desired line.
5. Solve the following system of linear equations using Gaussian elimination and back-substitution.

$$
\begin{array}{ll}
2 x+y+2 z & =1 \\
-4 x+3 z & =1 \\
6 x-2 y-3 z & =4
\end{array}
$$

We begin with Eq. $2 \rightarrow$ Eq. $2+2$ Eq. 1, Eq. $3 \rightarrow$ Eq. $3-3$ Eq.1. This gives $\begin{array}{r}2 x+y+2 z=1 \\ 0+2 y+7 z=3 \\ 0-5 y-9 z=1\end{array}$.
We now do Eq. $3 \rightarrow 2$ Eq. $3+5$ Eq. 2 , to get $\begin{aligned} 2 x+y+2 z & =1 \\ 0+2 y+7 z & =3 \\ 0+0+17 z & =17\end{aligned}$. Now we can do backsubstitution: $17 z=17$, so $z=1 ; 2 y+7=3$, so $y=-2 ; 2 x-2+2=1$, so $x=0.5$. Hence there is a unique solution $(x, y, z)=(0.5,-2,1)$.

