1. Carefully state the definition of "subspace". Give two examples within $\mathbb{R}^{2}$.

A subspace is a subset of a vector space, that is itself a vector space. The only zero-dimensional example is $\{(0,0)\}$; the only two-dimensional example is $\mathbb{R}^{2}$ itself. Many one-dimensional examples are possible, all equivalent to $\{k \bar{v}: k \in \mathbb{R}\}=$ $\operatorname{Span}(v)$, for some nonzero vector $v$.
2. Prove or provide a counterexample to the following statement:

For all $2 \times 2$ matrices $A, B$, if $A$ and $B$ are both invertible then $A+B$ is also invertible.
The statement is false, so we need a counterexample, i.e. specific invertible matrices $A, B$ such that $A+B$ is not invertible. Many are possible; one is $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, $B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right] . A$ and $B$ are each their own inverses, hence are invertible. $A+B=0$, which is not invertible since if it were $00^{-1}=I$, but also $00^{-1}=0$ and $0 \neq I$.
3. Let $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 1 \\ 0 & 2 & 1\end{array}\right]$. Find symmetric $B$ and skew-symmetric $C$ with $A=B+C$.

Set $B=\frac{1}{2}\left(A+A^{T}\right), C=\frac{1}{2}\left(A-A^{T}\right)$, as given by the relevant theorem. Hence $B=\left[\begin{array}{ccc}1 & 2 & 0.5 \\ 2 & 3 & 0.5 \\ 0.5 & 1.5 & 1.5\end{array}\right]$, and $C=\left[\begin{array}{ccc}0 & 0 & 0.5 \\ 0 & 0 & 0.5 \\ -0.5 & 0.5 & 0\end{array}\right]$.
4. Find $\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 1 \\ 0 & 2 & 1\end{array}\right]^{-1}$.

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
1 & 2 & 1 & 1 & 0 \\
2 & 3 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1
\end{array} R_{2}-2 R_{1} \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & -1 & -1 & -2 & 1 & 0 \\
0 & 2 & 1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
R_{1}+2 R_{2} \\
R_{3}+2 R_{2}
\end{array} \rightarrow\left[\begin{array}{cccccc}
1 & 0 & -1 & -3 & 2 & 0 \\
0 & -1 & -1 & -2 & 1 & 0 \\
0 & 0 & -1 & -4 & 1 & 1
\end{array}\right] \begin{array}{ccc}
R_{1}-R_{3} \\
R_{2}-R_{3}
\end{array} \rightarrow\right.} \\
& {\left[\begin{array}{ccccccc}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & -1 & 0 & 2 & -1 & -1 \\
0 & 0 & -1 & -4 & 2 & 1
\end{array}\right] \begin{array}{c}
-R_{2} \\
-R_{3}
\end{array} \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & -2 & 1 & 1 \\
0 & 0 & 1 & 4 & -2 & -1
\end{array}\right] . \text { Hence }\left[\begin{array}{cccc}
1 & 2 & 1 \\
2 & 3 & 1 \\
0 & 2 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -1 \\
-2 & 1 & 1 \\
4 & -2 & -1
\end{array}\right] .}
\end{aligned}
$$

5. Write $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ as the product of elementary matrices.

We use ERO's to turn this matrix into the identity, as $R_{2} \rightarrow R_{2}-2 R_{1}, R_{1} \rightarrow R_{1}+$ $2 R_{2}, R_{2} \rightarrow-R_{2}$. Using elementary matrices, this is $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Multiplying on the left by $\left(\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]\right)^{-1}$, we get $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]=\left(\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]\right)^{-1}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=$ $\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]^{-1}\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]^{-1}\left[\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, a product of elementary matrices.

