Math 254 Fall 2012 Exam 7 Solutions

1. Carefully state the definition of "vector space". You need not write out all the properties in detail. Give two examples, each six dimensional.

A vector space is a set of vectors V, a field of scalars K, and operations of vector addition and scalar multiplication, which must be closed and satisfy eight axioms. Six-dimensional examples we've seen include $\mathbb{R}^{6}, P_{5}(t), M_{2,3}(\mathbb{R})$.
2. Let $u=(2,-1,0)$, a vector in \mathbb{R}^{3}. Compute $\|u\|_{1},\|u\|_{2},\|u\|_{3},\|u\|_{\infty}$.

$$
\begin{aligned}
& \|u\|_{1}=|2|+|-1|+|0|=3 .\|u\|_{2}=\sqrt{2^{2}+(-1)^{2}+0^{2}}=\sqrt{5} . \\
& \|u\|_{3}=\sqrt[3]{|2|^{3}+|-1|^{3}+|0|^{3}}=\sqrt[3]{9} .\|u\|_{\infty}=\max \{|2|,|-1|,|0|\}=2 .
\end{aligned}
$$

3. Consider the vector space $M_{2,2}$ with the usual inner product $\langle X, Y\rangle=\operatorname{tr}\left(X^{T} Y\right)$. Set $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$, and $B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$. Find B_{1}, B_{2} such that $B=B_{1}+B_{2}, B_{1}$ is a multiple of A, and B_{2} is orthogonal to A.

We set $B_{1}=\operatorname{proj}(B, A)=\frac{\langle A, B\rangle}{\langle A, A\rangle} A=\frac{4}{10} A=\left[\begin{array}{cc}0.4 & 0.8 \\ 0.8 & 0.4\end{array}\right]$. We now find $B_{2}=$ $B-B_{1}=\left[\begin{array}{cc}0.6 & -0.8 \\ 0.2 & 0.6\end{array}\right]$. If you wanted, you could double-check that $\left\langle A, B_{2}\right\rangle=0$.

The remaining two questions concern vector space $V=P_{1}(x)[0,1]$, the set of polynomials of degree at most 1 on interval $[0,1]$ with inner product $\langle u(x), v(x)\rangle=\int_{0}^{1} u(x) v(x) d x$. Let $S=\left\{s_{1}, s_{2}\right\}$ for $s_{1}(x)=\sqrt{3} x, s_{2}(x)=-3 x+2$.
4. Prove that S is an orthonormal set (hence a basis).

We need to show three things: $\left\langle s_{1}, s_{1}\right\rangle=1,\left\langle s_{2}, s_{2}\right\rangle=1,\left\langle s_{1}, s_{2}\right\rangle=0$. We have $\left\langle s_{1}, s_{1}\right\rangle=\int_{0}^{1} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{1}=1$. We have $\left\langle s_{2}, s_{2}\right\rangle=\int_{0}^{1}(-3 x+2)^{2} d x=$ $\int_{0}^{1}\left(9 x^{2}-12 x+4\right) d x=3 x^{3}-6 x^{2}+\left.4 x\right|_{0} ^{1}=1$. Lastly, we have $\left\langle s_{1}, s_{2}\right\rangle=$ $\int_{0}^{1}(-3 x+2)(\sqrt{3} x) d x=\sqrt{3} \int_{0}^{1}\left(-3 x^{2}+2 x\right) d x=\left.\sqrt{3}\left(-x^{3}+x^{2}\right)\right|_{0} ^{1}=0$.
5. Find the Fourier coefficients of $u(x)=x+1$ with respect to S.

Recall that the Fourier coefficients are the coefficients in the decomposition $u=\left\langle u, s_{1}\right\rangle s_{1}+\left\langle u, s_{2}\right\rangle s_{2}$. We have $\left\langle u, s_{1}\right\rangle=\int_{0}^{1}(x+1) \sqrt{3} x d x=\sqrt{3} \int_{0}^{1}\left(x^{2}+\right.$ $x) d x=\left.\sqrt{3}\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\frac{5 \sqrt{3}}{6}$. We also have $\left\langle u, s_{2}\right\rangle=\int_{0}^{1}(x+1)(-3 x+2) d x=$ $\int_{0}^{1}\left(-3 x^{2}-x+2\right) d x=-x^{3}-\frac{x^{2}}{2}+\left.2 x\right|_{0} ^{1}=\frac{1}{2}$.

