Math 254 Fall 2012 Exam 8 Solutions

1. Carefully state the definition of "linear transformation". Give two examples, each on \mathbb{R}^{3}.

A linear transformation is a function f whose domain and codomain are vector spaces, that satisfies $f(u+v)=f(u)+f(v), f(k u)=k f(u)$ for all vectors u, v in its domain, and all scalars k. Many examples are possible, such as $f((a, b, c))=(a, b, c), f((a, b, c))=(a, 0,0), f((a, b, c))=(b, c, a)$.
2. Consider the linear map $F: M_{2,2} \rightarrow M_{2,2}$ given by $F(A)=A-A^{T}$. Find a basis for its kernel, and a basis for its image.

> We see that $F\left(\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\right)=F\left(\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right)=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, while $F\left(\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right)=-F\left(\left[\begin{array}{ll}0 & 0\end{array}\right]\right)=$ $\left[\begin{array}{ll}0 & 1 \\ -1 & 1\end{array}\right]$. Hence its image is one-dimensional, with basis $\left\{\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\}$. By the dimension theorem, its kernel is therefore three-dimensional. We have two basis elements already, and it's not too hard to find a third, giving a basis of $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\}$.
3. What are the possible ranks and nullities of linear transformations $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$? Give an example of each possible combination, and indicate which are one-to-one and which are onto.

The dimension theorem gives just three possibilities, none of which are onto. rank $=2$, nullity $=0: F((a, b))=(a, b, 0)$. Since nullity is 0 , this is one-to-one. rank $=1$, nullity $=1: F((a, b))=(a, 0,0)$. Nullity >0, so not one-to-one. rank $=0$, nullity $=2: F((a, b))=(0,0,0)$. Also not one-to-one.
4. Consider the linear transformation $F: \mathbb{R}^{2} \rightarrow P_{2}(x)$ given by $F((a, b))=\int_{0}^{x}(a t+b) d t$. Find its rank and nullity, and a basis for its image.

We have $F((1,0))=\int_{0}^{x} t d t=\frac{x^{2}}{2}$, and $F((0,1))=\int_{0}^{x} 1 d t=x$. Since $\left\{x, \frac{x^{2}}{2}\right\}$ are independent, they form a basis of the image of F and thus the rank of F is 2 . By the dimension theorem, the nullity of F is 0 . Or, this could be proved directly as $\int_{0}^{x}(a t+b) d t=\frac{a x^{2}}{2}+b x=0$, hence $a=b=0$.
5. Suppose that $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, and $F \circ F \circ F \circ F=I_{2}$ (identity). Prove that the nullity of F is 0 , and find such an F.

Suppose the nullity of F were greater than zero. Then there would be some nonzero vector v with $F(v)=0$. But then $F \circ F \circ F \circ F(v)=F \circ F \circ F(0)=$ $F \circ F(0)=F(0)=0 \neq v=I_{2}(v)$. This is a contradiction, hence the nullity of F must be 0 . Many examples are possible, such as $F((a, b))=(-b, a)$ $\left(\right.$ rotation by $\left.\frac{\pi}{4}\right), F((a, b))=(-a,-b), F((a, b))=(a, b)$.

