Math 254 Fall 2012 Exam 9 Solutions

1. Carefully state the definition of "subspace". Give two examples, each within \mathbb{R}^3 .

A subspace of a vector space is a subset, that is itself a vector space. Many examples are possible, such as $\{(0,0,0)\}, \mathbb{R}^3, Span(\{(1,2,3)\}), Ker(f)$ for $f: \mathbb{R}^3 \to \mathbb{R}$ given by f((a,b,c)) = a + b + 3c.

2. Let A, B, C be linear transformations on finite-dimensional vector space V. Suppose that A is similar to B, and that B is similar to C. Prove that A is similar to C.

Because A is similar to B, there is some matrix P with $A = P^{-1}BP$. Because B is similar to C, there is some matrix Q with $B = Q^{-1}CQ$. Plugging in, we get $A = P^{-1}Q^{-1}CQP = (QP)^{-1}C(QP)$. Hence there is some matrix R = QP with $A = R^{-1}CR$, so A is similar to C.

For each $k \in \mathbb{R}$, we define a linear transformation $f_k : \mathbb{R}^2 \to \mathbb{R}^2$, given by $f_k((a, b)) = (2a + kb, a + 3b)$. The remaining three problems concern these functions f_k .

3. Determine the nullity of f_k , for each possible value of k.

We determine which vectors f_k sends to (0, 0). Hence, (2a+kb, a+3b) = (0, 0)so 2a + kb = 0, a + 3b = 0. If k = 6 then these are the same, so the solution space is one-dimensional and thus $nullity(f_6) = 1$. For any $k \neq 6$, the unique solution to the system is (a, b) = (0, 0) so $nullity(f_k) = 0$.

4. Determine the matrix representation $[f_k]_E$, for the standard basis $E = \{(1,0), (0,1)\}$.

We seek $[f_k]_E = [[f_k(e_1)]_E[f_k(e_2)]_E] = [\begin{smallmatrix} 2 & k \\ 1 & 3 \end{smallmatrix}].$

5. Determine the matrix representation $[f_k]_S$, for the basis $S = \{(1, 2), (2, 3)\}.$

We first compute $P_{ES} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$. We now compute $P_{SE} = P_{ES}^{-1} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$. Lastly, we find $[f_k]_S = P_{SE}[f_k]_E P_{ES} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & k \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 8-6k & 10-9k \\ -3+4k & -3+6k \end{bmatrix}$.