Math 254 Fall 2012 Exam 9 Solutions

1. Carefully state the definition of "subspace". Give two examples, each within \mathbb{R}^{3}.

A subspace of a vector space is a subset, that is itself a vector space. Many examples are possible, such as $\{(0,0,0)\}, \mathbb{R}^{3}, \operatorname{Span}(\{(1,2,3)\}), \operatorname{Ker}(f)$ for $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f((a, b, c))=a+b+3 c$.
2. Let A, B, C be linear transformations on finite-dimensional vector space V. Suppose that A is similar to B, and that B is similar to C. Prove that A is similar to C.

Because A is similar to B, there is some matrix P with $A=P^{-1} B P$. Because B is similar to C, there is some matrix Q with $B=Q^{-1} C Q$. Plugging in, we get $A=P^{-1} Q^{-1} C Q P=(Q P)^{-1} C(Q P)$. Hence there is some matrix $R=Q P$ with $A=R^{-1} C R$, so A is similar to C.

For each $k \in \mathbb{R}$, we define a linear transformation $f_{k}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, given by $f_{k}((a, b))=$ $(2 a+k b, a+3 b)$. The remaining three problems concern these functions f_{k}.
3. Determine the nullity of f_{k}, for each possible value of k.

We determine which vectors f_{k} sends to $(0,0)$. Hence, $(2 a+k b, a+3 b)=(0,0)$ so $2 a+k b=0, a+3 b=0$. If $k=6$ then these are the same, so the solution space is one-dimensional and thus $\operatorname{nullity}\left(f_{6}\right)=1$. For any $k \neq 6$, the unique solution to the system is $(a, b)=(0,0)$ so $\operatorname{nullity}\left(f_{k}\right)=0$.
4. Determine the matrix representation $\left[f_{k}\right]_{E}$, for the standard basis $E=\{(1,0),(0,1)\}$.

We seek $\left[f_{k}\right]_{E}=\left[\left[f_{k}\left(e_{1}\right)\right]_{E}\left[f_{k}\left(e_{2}\right)\right]_{E}\right]=\left[\begin{array}{cc}2 & k \\ 1 & 3\end{array}\right]$.
5. Determine the matrix representation $\left[f_{k}\right]_{S}$, for the basis $S=\{(1,2),(2,3)\}$.

We first compute $P_{E S}=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$. We now compute $P_{S E}=P_{E S}^{-1}=\left[\begin{array}{cc}-3 & 2 \\ 2 & -1\end{array}\right]$. Lastly, we find $\left[f_{k}\right]_{S}=P_{S E}\left[f_{k}\right]_{E} P_{E S}=\left[\begin{array}{cc}-3 & 2 \\ 2 & -1\end{array}\right]\left[\begin{array}{cc}2 & k \\ 1 & 3\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 2 & 3\end{array}\right]=\left[\begin{array}{cc}8-6 k & 10-9 k \\ -3+4 k & -3+6 k\end{array}\right]$.

