
MATH 254: Introduction to Linear Algebra
Chapter 0: Fundamental Definitions of Linear Algebra

Behold the most important ideas of the course. Please memorize them; they will be tested on every exam.

1. A vector space is a collection (typically named with an upper case like V ), of objects
called vectors (typically named with lower case like u, v, v1, v2) where you can add vectors
and multiply by real numbers (called scalars). This key property is called closure; two equivalent
statements are given below.

Closure 1: For every set of vectors v1, v2, . . . , vk all in V , and for every set of real numbers a1, a2, . . . , ak, the
combination a1v1 + a2v2 + · · ·+ akvk is a vector again in V .

Closure 2: Both (a) “scalar multiplication” and (b) “vector addition” hold, where:
(a) For every vector v in V , and every real number a, the product av is a vector again in V .
(b) For every two vectors u, v in V , their sum u+ v is a vector again in V .

Typically, if you already know that V is closed, you use Closure 1. However, if you want to prove that V is
closed, you use Closure 2. There are other properties besides closure that must hold for V to be a vector
space; we will study these in detail later.

2. For any set of vectors v1, v2, . . . , vk, their span is the set {a1v1+a2v2+· · ·+akvk}, where each
of a1, a2, . . . , ak varies over every real number. We denote this set of vectors as Span(v1, v2, . . . , vk),
and call the elements of this set linear combinations of v1, v2, . . . , vk.

3. The linear function space in a set of variables {x1, x2, . . . , xk} is just Span(x1, x2, . . . , xk).
For example, in the two variables x, y, the linear function space is {ax+ by} for every real a, b.

Note that a linear function may NOT include a constant, e.g. f(x, y) = 2x + 3y is linear, but g(x, y) =
4x + 5y + 3 is not linear. If we set a linear function equal to a constant, e.g. 2x + 3y = 4, we call this a
linear equation.

4. The polynomial space in a variable t, denoted P (t), is the set of all polynomials in the single
variable t. Often we restrict to a maximum degree n, which we denote Pn(t). For example, 6t2 + 3t − 4
and −4t2 + 8 are both in P (t), and also P2(t), P3(t), . . .. Neither is in P1(t) or P0(t).

5. Given positive integers m,n, the matrix space Mm,n is the set of all matrices with m rows
and n columns. If m = n we say the matrix is square, and sometimes abbreviate Mm,m as Mm.

6. Given positive integer n, the standard vector space Rn is the set of all n-tuples of real
numbers. That is, Rn is the set of ordered lists of n real numbers. These do not have an inherent
orientation and may be written horizontally or vertically as convenient. Popular examples are n = 2 and
n = 3, mostly because we can draw them.

7. For any set of vectors v1, v2, . . . , vk drawn from vector space V , we say this set is spanning
if Span(v1, v2, . . . , vk) = V . We know ⊆ holds; if = holds, we call that set spanning.

8. For any set of vectors v1, v2, . . . , vk, their nondegenerate span is the set {a1v1 + a2v2 +
· · ·+ akvk}, where each of a1, a2, . . . , ak varies over every real number except a1 = a2 = · · · =
ak = 0. Note that the regular span will always contain the vector 0, but the nondegenerate span may or
may not contain 0.

9. For any set of vectors v1, v2, . . . , vk, we say this set is dependent if their nondegenerate
span contains the vector 0. Otherwise, we say this set is independent; i.e. if their nondegenerate span
does not contain the vector 0.

10. For any set of vectors v1, v2, . . . , vk drawn from vector space V , we say this set is a basis
for V if it is both spanning and independent.



Comments on the Definitions:

1. Every vector space contains a zero vector. This could be it; we call this the “trivial vector space”. If
there is even one more vector, then there are infinitely many more; this can be proved by using scalar
multiplication repeatedly.

2. The span is defined on (takes as input) a set of vectors, typically finite. Its product is (its value or
output) is also a set of vectors. This product is an infinite set, with the sole exception of Span(0) = {0}.

3. “Spanning”, “Dependent”, and “Basis” are all properties that a set of vectors does or does not possess.

4. The standard basis for the linear function space on a set of variables, is exactly that set of variables.
For example, the standard basis for the linear function space on {x, y} is {x, y}.

5. The standard basis for Pn(t) is the set {1, t, t2, . . . , tn}. Note that this contains not n but n+1 vectors.

6. The standard basis for P (t) is the set {1, t, t2, . . .}. Note that this contains infinitely many vectors.

7. The standard basis for Mm,n is the set of mn matrices, each of which has all zero entries except for
a single 1 entry. The mn possible locations of this 1 entry correspond to the different matrices. For
example, M2,2 has basis {( 1 0

0 0 ) , ( 0 1
0 0 ) , ( 0 0

1 0 ) , ( 0 0
0 1 )}. This is a set of 2× 2 = 4 vectors.

8. The standard basis for Rn is denoted {e1, e2, . . . , en} where ei has all zeroes, except for a single 1 in
the ith position. For example, if n = 3, e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

9. If a set of vectors S contains two vectors, one of which is a multiple of the other, then S is dependent.
For example, S = {1 + 2t, 3 + 5t, 2 + 4t} is dependent because the first vector is half of the last one.
WARNING: the reverse need not hold. A set of vectors could be dependent even if no vector is a
multiple of another. For example, T = {1 + 2t, 3 + 5t, 4 + 7t} is dependent because the sum of the first
two vectors, minus the third, equals 0.

10. An important theorem we will learn later is that all bases of a vector space have the same size. This
size is called the “dimension” of the vector space. Hence you now know the dimension of our most
important vector spaces. For example, P2(t) is three dimensional; all of its bases consist of three
vectors.

11. If a subset of a vector space is closed, that subset must itself be a vector space. We call this a subspace
of the original vector space. This allows us to construct lots of new vector spaces, as subspaces of the
important vector spaces you already know.

Helpful Proof Techniques:

1. To prove that a set of vectors S is closed, let u, v be arbitrary vectors in S, and a be an arbitrary real
number. You need to prove that u+ v and au are both vectors in S.

2. To prove that a set of vectors S is not closed, you need a single counterexample. Either find some
u, v ∈ S where u + v /∈ S, or find some u ∈ S and a ∈ R where au /∈ S. Sometimes only one of these
two approaches will work.

3. To prove that a set of vectors S is spanning, take an arbitrary vector in V and show how to express it
as a linear combination of S.

4. To prove that a set of vectors S is not spanning, you need a single counterexample. Select one vector
in V (it may be hard to find one that works), assume that it can be expressed as a linear combination
of S, and derive a contradiction.

5. To prove that a set of vectors S is dependent, you need to find a nondegenerate linear combination
that gives the zero vector. This is typically harder the bigger S is.

6. To prove that a set of vectors S is independent, assume that a linear combination gives the zero vector,
and prove that it must be the degenerate linear combination.

7. To prove that two sets are equal, prove that each is a subset of the other.



Solved Problems

1. Carefully state the definition of “Span”.

The span of a set of vectors {v1, v2, . . . , vk} is the set of all linear combinations {a1v1+a2v2+
· · ·+ akvk}, where the ai each take on every real value.

2. Carefully state the definition of P3(t).

P3(t) is the polynomial space in the variable t, of degree at most 3. Equivalently, this is
{at3 + bt2 + ct+ d}, where a, b, c, d each take on every real value.

3. Carefully state the definition of “Dependent”.

A set of vectors is dependent if their nondegenerate span contains the vector 0.

4. Carefully state the definition of M2,2.

M2,2 is the matrix space consisting of all 2× 2 matrices.

5. Carefully state the definition of “Basis”.

A basis is a set of vectors that is both spanning and independent.

6. Give two vectors from the linear function space in x.

Many examples are possible, such as 3x,−4x, πx, 0.

7. Give two vectors from R4.

Many examples are possible, such as (0, 0, 0, 1), (1, 2, 3, 4), (−1, 0, 0, 2).

8. Consider the vector space R3, and set v = (−3, 2, 0), u = (0, 1, 4). Calculate 2v − u.

2v − u = 2(−3, 2, 0)− (0, 1, 4) = (−6, 4, 0) + (0,−1,−4) = (−6, 3,−4)

9. Consider the vector space M2,3, and set u =
(
1 2 1
1 −1 0

)
, v = ( 2 3 0

0 1 2 ). Calculate 2v − u.

2v − u = 2 ( 2 3 0
0 1 2 )−

(
1 2 1
1 −1 0

)
=

(
3 4 −1
−1 3 4

)
.

10. Consider the vector space P (t), and set u = t+ 1, v = t+ 2. Prove that 3t+ 1 is in Span(u, v).

Note that 5u−2v = 5(t+1)−2(t+2) = 3t+1, as desired. We find 5,−2 by a side calculation;
for example, t = 2u− v and 1 = −u+ v so 3t+ 1 = 3(2u− v) + (−u+ v) = 5u− 2v. We will
learn systematic ways to do this later.

11. Consider the vector space P (t), and set u = t+ 1, v = t+ 2. Prove that 3t2 + 1 is not in Span(u, v).

Because u, v are both in P1(t), their span is as well (in fact it is exactly P1(t)). However
3t2 + 1 is not in P1(t).

12. Consider the linear function space in {x, y, z}. Prove that Span(x, y) = Span(x+ y, x− y).

Because x+y = 1x+ 1y and x−y = 1x−1y, we conclude x+y, x−y are each in Span(x, y)
and hence Span(x + y, x − y) ⊆ Span(x, y). On the other hand, x = 1

2 (x + y) + 1
2 (x − y)

and y = 1
2 (x+ y)− 1

2 (x− y), so x, y are each in Span(x+ y, x− y) and hence Span(x, y) ⊆
Span(x+ y, x− y).

13. Consider the set S of all v = (v1, v2) such that |v1| ≥ |v2|. This is a subset of R2. Is it closed?

For any scalar a and any vector v in S, we calculate av = a(v1, v2) = (av1, av2). Because
|v1| ≥ |v2|, we may multiply both sides by the nonnegative |a| to get |a||v1| ≥ |a||v2| and
hence |av1| ≥ |av2|. Hence av is a vector in S; the first closure property holds.
We now take two vectors u, v in S, and calculate u+v = (u1, u2)+(v1, v2) = (u1+v1, u2+v2).
Must |u1 + v1| ≥ |u2 + v2|? Perhaps not, so we need to find a specific counterexample. Many
are possible, for example u = (3, 1), v = (−3, 1). Both of u, v are in S, but u + v = (0, 2)
is not. Hence the second closure property does NOT hold. Since both closure properties do
not hold, S is not closed.



14. Consider vector space V , and vectors v1, v2 in V . Set S = Span(v1, v2). Prove that S is closed (and
hence a subspace of V ).

Let u,w be arbitrary vectors from Span(u, v). Then there are real numbers a1, a2, b1, b2 such
that u = a1v1 + a2v2 and w = b1v1 + b2v2. We have u + w = a1v1 + a2v2 + b1v1 + b2v2 =
(a1 + b1)v1 + (a2 + b2)v2, so u+ w is in S. This proves closure of vector addition. Let c be
an arbitrary real number. Then cu = c(a1v1 + a2v2) = (ca1)v1 + (ca2)v2. Hence cu is in S.
This proves closure of scalar multiplication.

In fact, a similar proof works not just for two vectors, but for any number.

15. Consider the vector space P2(t), and set S = {a0 + a1t+ a2t
2 : a0 + a1 + a2 = 0}, a subset. Prove that

S is closed.

Let u, v be arbitrary vectors in S. Then there are real numbers a0, a1, a2, b0, b1, b2 such that
u = a0 + a1t + a2t

2 and v = b0 + b1t + b2t
2, and also a0 + a1 + a2 = 0 = b0 + b1 + b2. We

have u+ v = (a0 + b0) + (a1 + b1)t+ (a2 + b2)t2, and (a0 + b0) + (a1 + b1) + (a2 + b2) = 0,
so u + v is in S. This proves closure of vector addition. Let c be an arbitrary real number.
Then cu = (ca0) + (ca1)t+ (ca2)t2. We have (ca0) + (ca1) + (ca2) = c(a0 +a1 +a2) = c0 = 0,
so cu is in S. This proves closure of scalar multiplication.

16. Consider the vector space P (t), and set u = t − 1, v = t2 − 1, w = t2 − t. Prove that 3t + 1 is not in
Span(u, v, w).

Method 1: Suppose 3t+ 1 = a(t− 1) + b(t2 − 1) + c(t2 − t) = (b+ c)t2 + (a− c)t− (a+ b).
Equating coefficients of the polynomials in t, we conclude that b+c = 0, a−c = 3,−a−b = 1.
Adding these three equations we get 0 = 4; hence there is no solution.
Method 2: Let S = {a0 + a1t+ a2t

2 : a0 + a1 + a2 = 0}, a subset of P2(t). S is closed by the
preceding problem. Since u, v, w ∈ S, also Span(u, v, w) ⊆ S. However 3t+ 1 is not in S, so
it cannot be in Span(u, v, w).

17. Consider the vector space R2, and set u = (1, 1), v = (2, 3), w = (0, 5). Prove that {u, v, w} is
dependent.

To prove that {u, v, w} is dependent, we need to find a nondegenerate linear combination
yielding zero. Consider 10u− 5v+w, found by a side calculation. 10u− 5v+w = 10(1, 1)−
5(2, 3) + (0, 5) = (10, 10)− (10, 15) + (0, 5) = (0, 0). Hence, {u, v, w} is dependent.

18. Consider the vector space R2, and set u = (2, 2), v = (3, 0). Prove that {u, v} is independent.

To prove that {u, v} is independent, we need to prove that any nondegenerate linear com-
bination does not yield the zero vector. Suppose, to the contrary, that there were such a
linear combination, i.e. some constants a, b (not both zero) so that au + bv = (0, 0). We
calculate au+ bv = a(2, 2) + b(3, 0) = (2a, 2a) + (3b, 0) = (2a+ 3b, 2a) = (0, 0). So, we must
have 2a + 3b = 0 and 2a = 0. The second equation gives us a = 0; we plug that into the
first equation and get b = 0. Hence, a = b = 0 and the linear combination was actually
degenerate (a contradiction!). Hence {u, v} is independent.

19. Consider the vector space R3, and set u = (1, 1, 1), v = (−1, 0, 1), w = (1, 2, 3). Prove that {u, v, w} is
dependent.

To prove that {u, v, w} is dependent requires a nondegenerate linear combination yielding
the zero vector. We have 2u + v − w = 2(1, 1, 1) + 1(−1, 0, 1) − 1(1, 2, 3) = (2, 2, 2) +
(−1, 0, 1) + (−1,−2,−3) = (0, 0, 0), so this set is dependent. To find this linear combina-
tion, we seek constants a, b, c (not all zero) so that au + bv + cw = (0, 0, 0). We calculate
au + bv + cw = (a, a, a) + (−b, 0, b) + (c, 2c, 3c) = (a − b + c, a + 2c, a + b + 3c) = (0, 0, 0).
Hence a− b+ c = 0, a+ 2c = 0, a+ b+ 3c = 0. This system has infinitely many solutions –
choose c arbitrarily, then a = −2c, b = −c. The example above corresponded to c = −1.



NOTE: No one of u, v, w is a multiple of any one of the others, and yet they are dependent.

20. Consider the vector space R2, and set u = (2, 3). Prove that {u} is not spanning.

To prove that {u} is not spanning, we must provide a counterexample. We claim that
(1, 1) cannot be expressed as a linear combination of u, because then for some a we have
(1, 1) = a(2, 3) = (2a, 3a), and hence 2a = 1 = 3a, which is impossible.

21. Consider the vector space P1(t). Prove that {t+ 1, 2t− 1} is spanning.

Consider an arbitrary vector in P1(t), say at+ b. We consider the linear combination α(t+
1) + β(2t − 1), where α, β are real numbers given by α = a+2b

3 and β = a−b
3 (found by a

side calculation). We compute that α(t + 1) + β(2t − 1) = a+2b
3 (t + 1) + a−b

3 (2t − 1) =

t(a+2b
3 + 2a−b

3 ) + (a+2b
3 − a−b

3 ) = at+ b, as desired.

22. Consider the vector space R2, and set u = (2, 2), v = (3, 0). Prove that {u, v} is spanning.

To prove that {u, v} is spanning, we need to prove that every vector can be expressed as a
linear combination of u, v. Let x = (x1, x2) be an arbitrary vector in R2. Set a = x2/2 and
set b = (x1−x2)/3 (both real numbers no matter what x is), found by a side calculation. We
have au+ bv = a(2, 2) + b(3, 0) = (2a+ 3b, 2a) = (x1, x2) = x.

23. Consider the vector space R2, and set u = (2, 2), v = (3, 0), w = (7, 5). Prove that {u, v, w} is spanning.

To prove that {u, v, w} is spanning, we need to prove that every vector can be expressed
as a linear combination of u, v, w. Comparing with the previous problem, already every
x = au + bv, for some real a, b. Hence x = au + bv + 0w, a linear combination of {u, v, w},
so this set is also spanning.

24. Consider the vector space R3, and set u = (1, 1, 1), v = (−1, 0, 1), w = (1, 2, 3). Prove that {u, v, w} is
not spanning.

To prove that {u, v, w} is not spanning, we must find a counterexample. We claim that
x = (1, 1, 0) is such a counterexample (found by a tricky side calculation). Suppose we could
express x as a linear combination of u, v, w. Then, for some real constants a, b, c, we have
x = au + bv + cw = (a − b + c, a + 2c, a + b + 3c) = (1, 1, 0). Hence a − b + c = 1, a + 2c =
1, a+b+3c = 0. Adding the first and third equations gives 2a+4c = 1, which is inconsistent
with the second equation. Hence x = (1, 1, 0) is not expressible as a linear combination of
{u, v, w}, which is therefore not spanning.

25. Find two different bases for R2.

Many solutions are possible. An easy choice is the standard basis {e1, e2} = {(1, 0), (0, 1)}.
An earlier problem showed that {(2, 2), (3, 0)} is spanning, and another proved that {(2, 2), (3, 0)}
is independent; hence this set is a basis.

26. Consider the linear function space in {x, y, z}. Set S = Span(x + y, x + z). Find two different bases
for S.

A natural choice is {x+ y, x+ z}; this set is spanning since Span(x+ y, x+ z) = S is exactly
what we need. This set is independent because if a(x+ y) + b(x+ z) = 0 then a = b = 0 so
no nondegenerate linear combination gives 0.
For another basis, consider {x+ y,−y + z}. These are both vectors from S since −y + z =
−1(x + y) + 1(x + z). This set is independent because if a(x + y) + b(−y + z) = 0 then
a = b = 0 again. To prove it is spanning it is enough to prove S ⊆ Span(x+ y,−y + z). We
have x + y = 1(x + y) + 0(−y + z), and x + z = 1(x + y) + 1(−y + z); hence the proof is
complete.



Supplementary Problems

Be sure to thoroughly justify all your solutions.

27. Carefully state the definition of “Vector Space”.

28. Carefully state the definition of “Span”.

29. Carefully state the definition of “Nondegenerate Span”.

30. Carefully state the definition of “Mm,n”.

31. Carefully state the definition of “Independent”.

32. Consider the vectors in R3 given by u = (1, 2, 3), v = (4, 0, 1), w = (−3,−2, 5). Calculate 2u− 3v− 4w.

33. Consider S ⊆ R2 of those vectors (v1, v2) such that 2v1 + v2 = 0. Determine whether or not this is
closed.

34. Consider S ⊆ R2 of those vectors (v1, v2) such that v1v2 = 0. Determine whether or not this is closed.

35. Consider the linear function space on {x, y, z}. Determine whether or not x ∈ Span(x+y, x−z, y+z).

36. Consider the linear function space on {x, y, z}. Determine whether or not x ∈ Span(x+y, x+z, y+z).

37. Consider the linear function space on {x, y, z}. Determine whether or not x ∈ Span(x−y, x−z, y−z).
38. Consider S ⊆M2,2 of those vectors

(
a b
c d

)
such that c = 0. Determine whether or not this is closed.

39. Consider S ⊆M2,2 of those vectors
(
a b
c d

)
such that a+ c = 0. Determine whether or not this is closed.

40. Consider S ⊆M2,2 of those vectors
(
a b
c d

)
such that a+ c = 1. Determine whether or not this is closed.

41. Consider the vector space R2, and set u = (2, 6), v = (−3,−9). Determine whether or not {u, v} is
independent.

42. Consider the vector space R2, and set u = (2, 6), v = (−3,−9), w = (5, 15). Determine whether or not
{u, v, w} is independent.

43. Consider the vector space R2, and set u = (2, 6), v = (0,−9). Determine whether or not {u, v} is
independent.

44. Consider the vector space P1(t). Determine whether or not {1, 2t} is independent.

45. Consider the vector space P1(t). Determine whether or not {0, 1, 2t} is spanning.

46. Consider the vector space P1(t). Determine whether or not {6t+ 2,−9t− 3} is spanning.

47. Consider the vector space M2,2. Determine whether or not
{(

1 −1
0 0

)
,
(

1 0
−1 0

)
,
(
1 0
0 −1

)}
is spanning.

48. Consider the vector space M2,2. Determine whether or not
{(

1 −1
0 0

)
,
(

1 0
−1 0

)
,
(
1 0
0 −1

)
,
(

1 −1
−1 1

)}
is

spanning.

49. Consider the vector space M2,2. Determine whether or not
{(

1 −1
0 0

)
,
(

1 0
−1 0

)
,
(
1 0
0 −1

)
,
(

1 −1
−1 0

)}
is

spanning.

50. Which of the sets given in problems 41-49 are bases of their respective vector spaces?

Answers to Supplementary Problems: (WARNING: these are just answers, NOT thoroughly justified solutions)
32: (2, 12,−17) 33: yes 34: no 35: yes 36: yes 37: no 38: yes 39: yes 40: no 41: no 42:
no 43: yes 44: yes 45: yes 46: no 47: no 48: no 49: yes 50: 43,44,49


