Math 254 Fall 2013 Exam 0 Solutions

1. Carefully state the definition of "matrix space". Give two example vectors from $M_{2,3}$.

A matrix space $M_{m, n}$, for positive integers m, n, is the set of all matrices with m rows and n columns.
2. Let $u=\left[\begin{array}{ll}127\end{array}\right], v=u^{T}$. For each of the following, determine what type they are (undefined, scalar, matrix/vector). For each matrix/vector, specify the dimensions.
(a) $u+(u \cdot v) \quad$ Undefined
(b) $u+v^{T} \quad$ Row 3 -vector, or 1×3 matrix
(c) $v u \quad 3 \times 3$ matrix
(d) $u v \quad 1 \times 1$ matrix, or scalar
(e) $(u \times v) \times v \quad 3$-vector
3. Let $u=(1,1,1,3), v=(-1,0,1,1)$. Find the angle between u, v.

The desired angle, θ, satisfies $\cos \theta=\frac{u \cdot v}{\|u\|\|v\|}=\frac{u \cdot v}{\sqrt{u \cdot u} \sqrt{v \cdot v}}=\frac{3}{\sqrt{12} \sqrt{3}}=\frac{3}{\sqrt{36}}=\frac{1}{2}$. Fortunately, this is a familiar angle, $\theta=\pi / 3$. Children sometimes call this 60°.
4. Determine, with justification, all possible x (if any) that makes the following hold:

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
3 & x \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

We calculate $\left[\begin{array}{cc}1 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{cc}3 & x \\ -1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & x+2 \\ 0 & x+3\end{array}\right]$. Hence two of the four entries are always what we want, and the others are too, provided $x+2=0$ and $x+3=1$. This happens for $x=-2$, and only then.
5. For $u=(1,0,1), v=(-1,1,0)$, calculate $u \times v$.

Solution 1: We write $\left|\begin{array}{cccc}i & j & k & 1 \\ 1 & 0 & 1 & 0 \\ -1 & 1 & 1 & 0\end{array}\right|$ to calculate the determinant, as $-j+k-i=(-1,-1,1)$.
Solution 2: $u \times v=(i+k) \times(-i+j)=-(i \times i)+(i \times j)-(k \times i)+(k \times j)=k-j-i=(-1,-1,1)$.
Extra: We say that the inverse of a 2×2 square matrix, is another 2×2 square matrix, with their product the identity matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. You just determined an inverse for $\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$.
(1) Prove that if the rows of a matrix A are the same, then A does NOT have an inverse.
(2) Find all a, b, c such that $M=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ is its own inverse.
(1) Since the rows of A are the same, the rows of $A B$ are the same, for any matrix B (because of the way we multiply matrices). However, the rows of $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are not the same, so $A B$ can't equal the identity.
(2) We have $M M=\left[\begin{array}{cc}a^{2} & b(a+c) \\ 0 & b^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, so $a^{2}=b^{2}=1$. Also $b(a+c)=0$ so either $b=0$ or $a+c=0$. This gives four solutions $\left[\begin{array}{cc} \pm 1 & 0 \\ 0 & \pm 1\end{array}\right]$, and also the two infinite families of solutions $\left[\begin{array}{ll}1 & b \\ 0 & -1\end{array}\right]$ (for any b), and $\left[\begin{array}{cc}-1 & b \\ 0 & 1\end{array}\right]$ (for any b).

