Math 254 Fall 2013 Exam 10 Solutions

1. Carefully state the definition of "dependent". Give two examples from $P_{3}(t)$.

A set of vectors is dependent if there is a nondegenerate linear combination yielding the zero vector. Some examples are $\{0\},\{1, t, 1+t\},\left\{t^{2}, 2 t^{2}\right\}$.
2. Let $M \in M_{3,3}$. Suppose that M is similar to I_{3}, the identity matrix. Prove that $M=I_{3}$.

Since M is similar to I_{3}, there is some invertible P such that $M=P^{-1} I_{3} P$. We simplify, using $I_{3} P=P$ and $P^{-1} P=I_{3}$, to get $M=P^{-1} P=I_{3}$.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear mapping defined as $f((a, b))=(2 a, a-b)$. Let $S=$ $\{(1,-2),(1,-1)\}$ be a basis for \mathbb{R}^{2}. Find $[f]_{S}$.
We first find $P_{E S}=\left(\begin{array}{cc}1 & 1 \\ -2 & -1\end{array}\right)$, by writing S as columns. We next find $P_{S E}=P_{E S}^{-1}=\left(\begin{array}{cc}-1 & -1 \\ 2 & 1\end{array}\right)$. We next find $[f]_{E}=\left(\begin{array}{cc}2 & 0 \\ 1 & -1\end{array}\right)$, by writing $f\left(e_{1}\right), f\left(e_{2}\right)$ as columns. Lastly, we compute $[f]_{S}=$ $P_{S E}[f]_{E} P_{E S}=\left(\begin{array}{cc}-5 & -4 \\ 7 & 6\end{array}\right)$.
4. Let V be the vector space of functions that have as a basis $S=\left\{e^{3 t} \sin 2 t, e^{3 t} \cos 2 t\right\}$. Find the matrix representation $\left[\frac{d}{d t}\right]_{S}$.
Let $s_{1}=e^{3 t} \sin 2 t, s_{2}=e^{3 t} \cos 2 t$ for convenience. We calculate $\frac{d}{d t} s_{1}=3 s_{1}+2 s_{2}$, using the product and chain rules. We similarly calculate $\frac{d}{d t} s_{2}=-2 s_{1}+3 s_{2}$. Writing these as columns, we get $\left[\frac{d}{d t}\right]_{S}=\left(\begin{array}{cc}3 & -2 \\ 2 & 3\end{array}\right)$.
5. Let V be the vector space of functions that have as a basis $S=\left\{e^{3 t} \sin 2 t, e^{3 t} \cos 2 t\right\}$. Let I_{v} denote the identity linear mapping on V. Find the rank of $\frac{d}{d t}$, and of $\left(\frac{d}{d t}-I_{v}\right)$.
From Problem 4, we have $\left[\frac{d}{d t}\right]_{S}=\left(\begin{array}{cc}3 & -2 \\ 2 & 3\end{array}\right)$. One way: this matrix has determinant 13 , which is nonzero, hence the matrix is nonsingular, hence $\frac{d}{d t}$ is onto, hence it has rank 2. Another way: we put $\left(\begin{array}{cc}3 & -2 \\ 2 & 3\end{array}\right)$ into echelon form, and see two pivots, so the rank is 2 .
$\left[\frac{d}{d t}-I_{v}\right]_{S}=\left[\frac{d}{d t}\right]_{S}-\left[I_{v}\right]_{S}=\left(\begin{array}{cc}3 & -2 \\ 2 & 3\end{array}\right)-\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}2 & -2 \\ 2 & 2\end{array}\right)$. We put this into echelon form, again see two pivots, so the rank is 2 .

Extra: Recall that any matrix $M \in M_{3,3}$ may be written uniquely as $M=M_{S}+M_{S S}$, where M_{S} is symmetric and $M_{S S}$ is skew-symmetric. Consider the linear map $f: M_{3,3} \rightarrow M_{3,3}$ defined as $f(M)=M_{S}$. Write down the standard basis E, and calculate $[f]_{E}$.
There are different ways to order the standard basis, which leads to different solutions to this problem. The usual way is
$E=\left\{\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)\right\}$. Then

$$
[f]_{E}=\left(\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 11 / 2 & 0 & 1 / 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 01 / 2 & 0 & 1 & 1 / 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

