Math 254 Fall 2013 Exam 11 Solutions

- 1. Carefully state the definition of "span". Give two examples from within $P_1(t)$. The span of a set of vectors is the set of all their linear combinations. It happens to be a vector space. Examples: $Span(\{0\}) = \{0\}, Span(\{1+t\}) = \{a + at : a \in \mathbb{R}\}, Span(\{1,t\}) = P_1(t).$
- 2. True or false: For all A, B, det(A + B) = det(A) + det(B). Be sure to justify your answer.
 False; we need one counterexample. Let A = I₂, B = -I₂. Each is triangular; we have det(A) = 1, while det(B) = (-1)² = 1. However A + B = 0 so det(A + B) = 0.
- 3. Let $A = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & 7 \\ 0 & 1 \end{pmatrix}$. Let C be the block matrix $\begin{pmatrix} A & 0 \\ A & B \end{pmatrix}$, let F be the block matrix $\begin{pmatrix} B & F & I \\ 0 & C & F^T \\ 0 & 0 & A \end{pmatrix}$. Find |D|.

Because D is block triangular, we have |D| = |B||C||A|. Because A, B are triangular, we compute $|A| = 2 \cdot 1 = 2$ and $|B| = 5 \cdot 1 = 5$. Because C is block triangular, we have $|C| = |A||B| = 2 \cdot 5 = 10$. Putting it all together, $|D| = 5 \cdot 10 \cdot 2 = 100$.

4. Determine which value(s) of a will lead to the following system having a unique solution: $\{x + 2y + az = 1, ax + ay + z = 1, x - y + az = 1\}.$

We need $det(A) \neq 0$, for $A = \begin{pmatrix} 1 & 2 & a \\ a & a & 1 \\ 1 & -1 & a \end{pmatrix}$. We compute $det(A) = 3 - 3a^2$ and solve $3 - 3a^2 = 0$. This has solutions $a = \pm 1$. Hence, for all other a, this system will have a unique solution.

5. Use Cramer's Rule to determine which value(s) of a (if any) will lead to the system $\{x + 2y + az = 1, ax + ay + z = 1, x - y + az = 1\}$ having a unique solution in which z = 2.

We want $2 = z = \frac{det(A_z)}{det(A)} = \frac{det(A_z)}{3-3a^2}$, where we used the result from Problem 4. We have $A_z = \begin{pmatrix} 1 & 2 & 1 \\ a & a & 1 \\ 1 & -1 & 1 \end{pmatrix}$ and compute $det(A_z) = 3 - 3a$. So $2 = \frac{3(1-a)}{3(1-a^2)} = \frac{1-a}{(1-a)(1+a)} = \frac{1}{1+a}$. We cross-multiply this to find $a + 1 = \frac{1}{2}$, so there is a unique solution $a = -\frac{1}{2}$.

Extra: Calculate
$$\begin{vmatrix} 2 & 2 & 1 & 3 & 4 & 1 \\ 4 & 2 & 1 & 3 & 0 & 1 \\ -1 & 2 & 0 & 1 & 1 & 2 \\ 1 & 0 & 2 & 3 & -1 & 1 \\ 1 & 2 & 1 & 1 & -1 & 2 \\ 0 & 1 & 2 & -2 & 1 & 1 \end{vmatrix}$$

Answer: 10