Math 254 Fall 2013 Exam 11 Solutions

1. Carefully state the definition of "span". Give two examples from within $P_{1}(t)$.

The span of a set of vectors is the set of all their linear combinations. It happens to be a vector space. Examples: $\operatorname{Span}(\{0\})=\{0\}, \operatorname{Span}(\{1+t\})=\{a+a t: a \in$ $\mathbb{R}\}, \operatorname{Span}(\{1, t\})=P_{1}(t)$.
2. True or false: For all A, B, $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$. Be sure to justify your answer.
False; we need one counterexample. Let $A=I_{2}, B=-I_{2}$. Each is triangular; we have $\operatorname{det}(A)=1$, while $\operatorname{det}(B)=(-1)^{2}=1$. However $A+B=0$ so $\operatorname{det}(A+B)=0$.
3. Let $A=\left(\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}5 & 7 \\ 0 & 1\end{array}\right)$. Let C be the block matrix $\left(\begin{array}{ll}A & 0 \\ A & B\end{array}\right)$, let F be the block matrix $\left(A^{T} B\right)$, and let D be the block matrix $\left(\begin{array}{ccc}B & F & I \\ 0 & C & F^{T} \\ 0 & 0 & A\end{array}\right)$. Find $|D|$.
Because D is block triangular, we have $|D|=|B||C||A|$. Because A, B are triangular, we compute $|A|=2 \cdot 1=2$ and $|B|=5 \cdot 1=5$. Because C is block triangular, we have $|C|=|A||B|=2 \cdot 5=10$. Putting it all together, $|D|=5 \cdot 10 \cdot 2=100$.
4. Determine which value(s) of a will lead to the following system having a unique solution: $\{x+2 y+a z=1, a x+a y+z=1, x-y+a z=1\}$.
We need $\operatorname{det}(A) \neq 0$, for $A=\left(\begin{array}{ccc}1 & 2 & a \\ a & 1 \\ 1 & -1 & a\end{array}\right)$. We compute $\operatorname{det}(A)=3-3 a^{2}$ and solve $3-3 a^{2}=0$. This has solutions $a= \pm 1$. Hence, for all other a, this system will have a unique solution.
5. Use Cramer's Rule to determine which value(s) of a (if any) will lead to the system $\{x+2 y+a z=1, a x+a y+z=1, x-y+a z=1\}$ having a unique solution in which $z=2$.
We want $2=z=\frac{\operatorname{det}\left(A_{z}\right)}{\operatorname{det}(A)}=\frac{\operatorname{det}\left(A_{z}\right)}{3-3 a^{2}}$, where we used the result from Problem 4. We have $A_{z}=\left(\begin{array}{ccc}1 & 2 & 1 \\ a & a & 1 \\ 1 & -1 & 1\end{array}\right)$ and compute $\operatorname{det}\left(A_{z}\right)=3-3 a$. So $2=\frac{3(1-a)}{3\left(1-a^{2}\right)}=\frac{1-a}{(1-a)(1+a)}=\frac{1}{1+a}$. We cross-multiply this to find $a+1=\frac{1}{2}$, so there is a unique solution $a=-\frac{1}{2}$.

Extra:
Calculate $\left|\begin{array}{ccccccc}2 & 2 & 1 & 3 & 4 & 1 \\ 4 & 2 & 1 & 3 & 0 & 1 \\ -1 & 2 & 0 & 1 & 1 & 2 \\ 1 & 0 & 2 & 3 & -1 & 1 \\ 1 & 2 & 1 & 1 & -1 & 2 \\ 0 & 1 & 2 & -2 & 1 & 1\end{array}\right|$.

Answer: 10

