Math 254 Fall 2013 Exam 12 Solutions

1. Carefully state the definition of "matrix space" $M_{m, n}$. Give two six-dimensional examples.
Matrix space $M_{m, n}$ is the vector space consisting of all $m \times n$ matrices. Exactly four of these are six-dimensional: $M_{1,6}, M_{2,3}, M_{3,2}, M_{6,1}$.
2. Give a 4×4 matrix, in Jordan canonical form, whose minimal polynomial is $(t-2)^{3}$.

Because $\lambda=2$ is the only root of the minimal polynomial, it is the only eigenvalue of the matrix. Because it appears with multiplicity 3 , the largest Jordan block for $\lambda=2$ is of size 3. There is only room for one more block, which must be of size 1 . Hence there are exactly two possible answers: $\left(\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right)$ and $\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$
3. Give a 4×4 matrix, in Jordan canonical form, that has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=5$, such that λ_{1} has both algebraic and geometric multiplicity 2 , and that λ_{2} has algebraic multiplicity 2 and geometric multiplicity 1 .
Because λ_{1}, λ_{2} each have algebraic multiplicity 2 , the matrix must have two 2 's and two 5's on the diagonal. Further, because λ_{2} has geometric multiplicity 1, there is a single Jordan block for $\lambda=5$ (thus of size 2). Because λ_{1} has geometric multiplicity 2 , there are two Jordan blocks for $\lambda=2$ (thus each of size 1). Hence there are exactly three possible answers: $\left(\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5\end{array}\right),\left(\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 5 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 5 & 0 & 0\end{array}\right)$, and $\left(\begin{array}{cccc}5 & 1 & 0 & 0 \\ 0 & 5 & 5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$.
For the last two problems, let $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 2\end{array}\right)$.
4. Find the characteristic polynomial of A, and its eigenvalues.

We calculate $|t I-A|=t^{3}-4 t^{2}+3 t=t(t-1)(t-3)$. Hence the eigenvalues of A are $0,1,3$ (each with algebraic multiplicity 1).
5. For each eigenvalue of A, find a basis for the corresponding eigenspace.

For eigenvalue 0 , we put $(0 I-A)$ into row canonical form as $\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right)$. This matrix has one-dimensional nullspace, with basis $\{(1,-2,1)\}$.
For eigenvalue 1 , we put $(1 I-A)$ into row canonical form as $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$. This matrix has one-dimensional nullspace, with basis $\{(0,1,-1)\}$.
For eigenvalue 3 , we put $(3 I-A)$ into row canonical form as $\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right)$. This matrix has one-dimensional nullspace, with basis $\{(1,1,1)\}$.

