Math 254 Fall 2013 Exam 2b Solutions

1. Carefully state the definition of "span". Describe $\operatorname{Span}\left(1, t, t^{2}\right)$.

The span of a set of vectors S is the set of all vectors obtained by all linear combinations of S. Alternatively, the span of a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is the set $\left\{\sum_{i=1}^{k} a_{i} v_{i}: a_{i} \in \mathbb{R}\right\}$. The set $\operatorname{Span}\left(1, t, t^{2}\right)$ is the set of all polynomials of degree at most two, also known as $P_{2}(t)$.
2. Carefully state the definition of "associated homogeneous linear system". Give an example, and explain its purpose.
A linear system has an associated homogeneous linear system, found by replacing all the constants by 0 while leaving the coefficients of the variables unchanged. Its purpose is to find the general solution to the original system using the general solution to the associated homogeneous system (and a particular solution to the original system). An example is $\{x+y=1, x+2 y=3\}$ has associated homogeneous system $\{x+y=0, x+2 y=0\}$.
The remaining three problems all concern the matrix $A=\left[\begin{array}{lllll}2 & 2 & 3 & 3 & 4 \\ 2 & 3 & 4 & 1 & 4 \\ 2 & 4 & 5 & 0 \\ 2 & 3 & 4 & 3 & 6\end{array}\right]$.
3. Place A in echelon form. Be sure to justify each step.

Step 1: $R_{2}-R_{1} \rightarrow R_{2}, R_{3}-R_{1} \rightarrow R_{3}, R_{4}-R_{1} \rightarrow R_{4}$. This results in $\left[\begin{array}{ccccc}2 & 2 & 3 & 3 & 4 \\ 0 & 1 & 1 & -2 & 0 \\ 0 & 2 & 2 & -3 & 1 \\ 0 & 1 & 1 & 0 & 2\end{array}\right]$.
Step 2: $R_{3}-2 R_{2} \rightarrow R_{3}, R_{4}-R_{2} \rightarrow R_{4}$. This results in $\left[\begin{array}{ccccc}2 & 2 & 3 & 3 & 4 \\ 0 & 1 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 2\end{array}\right]$.
Step 3: $R_{4}-2 R_{3} \rightarrow R_{4}$. This results in $\left[\begin{array}{ccccc}2 & 2 & 3 & 3 & 4 \\ 0 & 1 & 1 & -2 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ \hline\end{array}\right]$.
This last matrix is in echelon form.
4. Place A in row canonical form. Be sure to justify each step. You should begin with your answer from (3).

Step 1: $R_{1}-2 R_{2} \rightarrow R_{1}$. This results in $\left[\begin{array}{ccccc}2 & 0 & 1 & 7 & 4 \\ 0 & 1 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ & & 0\end{array}\right]$.
Step 2: $R_{1}-7 R_{3} \rightarrow R_{1}, R_{2}+2 R_{3} \rightarrow R_{2}$. This results in $\left[\begin{array}{ccccc}2 & 0 & 1 & 0 & -3 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
Step 3: $\frac{1}{2} R_{1} \rightarrow R_{1}$. This results in $\left[\begin{array}{ccccc}1 & 0 & \frac{1}{2} & 0 & -\frac{3}{2} \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
This last matrix is in row canonical form.
5. Write down a linear system for which A is an augmented matrix, and interpret your answer from (4) to write down the general solution for your system.
We need to choose variables. I pick a, b, c, d; then the system becomes $\{2 a+2 b+3 c+3 d=4,2 a+3 b+$ $4 c+d=4,2 a+4 b+5 c=5,2 a+3 b+4 C+3 d=6\}$.
We use back-substitution on the row canonical matrix, to first get $d=1$. Then, c is free and $b=2-c$. Lastly, $a=-\frac{3}{2}-\frac{1}{2} c$. Putting it all together, the general solution is $\left\{\left(\frac{-3-c}{2}, 2-c, c, 1\right): c \in \mathbb{R}\right\}$.

Extra: Consider the linear system in x, y, z given by $\{x+2 y+2 z=1, y+z=2, x+y+t z=-1\}$. For which values of t (if any) are there no solutions, one solution, infinitely many solutions? Find all solutions. $\left[\begin{array}{cccc}1 & 2 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ 1 & 1 & t & -1\end{array}\right]$ has echelon form $\left[\begin{array}{cccc}1 & 2 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & t & -1\end{array}\right]$. If $t \neq 1$, then there is one solution, $(-3,2,0)$. If $t=1$, there are infinitely many solutions $\{(-3,2-z, z): z \in \mathbb{R}\}$.

