Math 254 Fall 2013 Exam 3 Solutions

- 1. Carefully state the definition of "spanning". Give two examples from $P_2(t)$. A set of vectors is spanning if their span is the entire vector space. Some possible examples: $\{1, t, t^2\}, \{1, 1 + t, 1 + t^2\}, \{1, 2t, 3t^2\}, \{1, t, 2t, 3t^2\}.$
- 2. Suppose that *B* is an invertible 5×5 matrix. Prove that B^2 is also invertible. Solution 1: Because *B* is invertible there is some B^{-1} with $BB^{-1} = I$. We have $B^2(B^{-1})^2 = B(BB^{-1})B^{-1} = BIB^{-1} = BB^{-1} = I$, so the product of B^2 with matrix $(B^{-1})^2$ gives *I*.

Solution 2: By Thm 3.7, because B is invertible there are elementary matrices E_1, E_2, \ldots, E_k such that $B = E_1 E_2 \cdots E_k$. Then $B^2 = (E_1 E_2 \cdots E_k)^2$, a product of elementary matrices. Hence by Thm 3.7 again, B is invertible.

The remaining three problems all concern the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$.

- 4. Find a symmetric matrix B and a skew-symmetric matrix C such that A = B + C. We have $B = \frac{1}{2}(A + A^T)$ and $C = \frac{1}{2}(A - A^T)$. As it happens, $B = A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ while $C = 0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
- 5. Let $D = A^2 + 2A$. Calculate D, and calculate D^{-1} . $D = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^2 + 2\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & -3 & -2 & 0 \end{bmatrix}$. We start with $[D|I] = \begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 & 1 & 0 \\ 0 & 0 & -3 & -2 & 0 & 1 \end{bmatrix}$. We first do $R_3 - 2R_1 \to R_3$ to get $\begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 & 1 & 0 \\ 0 & 0 & -3 & -2 & 0 & 1 \end{bmatrix}$. We then do $R_1 + \frac{2}{3}R_3 \to R_1$ to get $\begin{bmatrix} 1 & 0 & 0 & -1/3 & 0 & 2/3 \\ 0 & 1 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & -3 & -2 & 0 & 1 \end{bmatrix}$. Lastly, we divide R_2 by 3 and R_3 by -3 to get $\begin{bmatrix} 1 & 0 & 0 & -1/3 & 0 & 2/3 \\ 0 & 1 & 0 & 0 & -1/3 & 0 \\ 0 & 0 & 1 & 2/3 & 0 & -1/3 \end{bmatrix}$. Hence $D^{-1} = \begin{bmatrix} -1/3 & 0 & 2/3 \\ 0 & 1/3 & 0 \\ 2/3 & 0 & -1/3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & -1 \end{bmatrix}$.
- Extra: Find the inverse and LU factorization of the matrix $\begin{pmatrix} -1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & -3 & 0 \end{pmatrix}$.

We start with $\begin{pmatrix} -1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 1 & -3 & 0 & 0 & 0 & 1 \end{pmatrix}$. We do $R_3 + R_1 \to R_3$ to get $\begin{pmatrix} -1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 & 0 & 1 \end{pmatrix}$. We then do $R_3 + R_2 \to R_3$ and $R_1 - 2R_2 \to R_1$ to get $\begin{pmatrix} -1 & 0 & -4 & 1 & -2 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 & 1 & 1 \end{pmatrix}$. We now do $R_1 + 2R_3 \to R_1$ and $R_2 - R_3 \to R_2$ to get $\begin{pmatrix} -1 & 0 & 0 & 3 & 0 & 2 \\ 0 & 1 & 0 & -1 & 0 & -1 \\ 0 & 0 & 2 & 1 & 1 & 1 \end{pmatrix}$. Lastly, we divide R_1 by -1 and R_3 by 2 to get $\begin{pmatrix} 1 & 0 & 0 & -3 & 0 & -2 \\ 0 & 1 & 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 1/2 & 1/2 & 1/2 \end{pmatrix}$. Hence the inverse is $\begin{pmatrix} -3 & 0 & -2 \\ -1 & 0 & -1 \\ 1/2 & 1/2 & 1/2 \end{pmatrix}$. For the LU factorization we need only do the two steps $R_3 + R_1 \to R_3$ and $R_3 + R_2 \to R_3$. Two multipliers are 1 and one is zero (see p.119 for details). Hence $L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$ while $U = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$.