Math 254 Fall 2013 Exam 5 Solutions

1. Carefully state the definition of "polynomial space". Give a set of three vectors from $P_{1}(t)$.

The polynomial space in a variable is the vector space consisting of all polynomials in that single variable. A set of three vectors from $P_{1}(t)$ is $\{0,1+t, 2-3 t\}$.
2. Let S consist of all skew-symmetric 3×3 matrices. S is a 3 -dimensional vector space; find a basis for S.
A skew-symmetric matrix A satisfies $A^{T}=-A$. Take $\left\{\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right)\right\}=T$.
Since we are told the dimension is 3 , and T has 3 vectors, we may either prove that T is independent or spanning. Independent is easier, as we don't need to determine the structure of S. Suppose a linear combination of them equals zero. Hence $a\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)+b\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right)+$ $c\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right)=0$. Then $\left(\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right)=\overline{0}$, so $a=b=c=0$, so this was a degenerate linear combination.
The remainder concerns matrix $A=\left(\begin{array}{cccc}2 & 1 & -3 & 5 \\ 4 & 2 & 0 & 3 \\ 2 & 1 & 3 & -2\end{array}\right)$ which has echelon form $\left(\begin{array}{cccc}4 & 2 & 0 & 3 \\ 0 & 0 & 6 & -7 \\ 0 & 0 & 0 & 0\end{array}\right)$.
3. Let $S=\operatorname{rowspace}(A)$. Determine the dimension of S and find a basis.

Because the echelon form of A has two nonzero rows, $\operatorname{dim}(S)=2$. Its basis is those rows, namely $\{(4,2,0,3),(0,0,6,-7)\}$.
4. Let $T=$ columnspace (A). Determine the dimension of T and find a basis.

Because the echelon form of A has two pivots, $\operatorname{dim}(T)=2$. Its basis corresponds to those columns of A that end up with pivots, namely the first and third ones, so $\{(2,4,2),(-3,0,3)\}$.
5. Set $U=\operatorname{Span}\{(2,4,2),(1,2,1)\}, V=\operatorname{Span}\{(-3,0,3),(5,3,-2)\}$, subspaces of \mathbb{R}^{3}. Find $\operatorname{dim}(U), \operatorname{dim}(V), \operatorname{dim}(U+V)$, and $\operatorname{dim}(U \cap V)$.
$\operatorname{dim}(U)=1$ since the first vector is twice the second. $\operatorname{dim}(V)=2$ since the first vector isn't a multiple of the second. [Warning: this procedure only works to test independence for 2 vectors, not more.] $U+V$ turns out to be exactly columnspace (A), so $\operatorname{dim}(U+V)=2$ by Problem 4. We have the lovely theorem telling us that $\operatorname{dim}(U)+\operatorname{dim}(V)=\operatorname{dim}(U+V)+\operatorname{dim}(U \cap V)$, so $1+2=2+\operatorname{dim}(U \cap V)$, and hence $\operatorname{dim}(U \cap V)=1$.

Extra: Consider the function space $F(x)$. Let $S=\operatorname{Span}\left\{1, \sin x, \cos x, \sin ^{2} x, \cos ^{2} x\right\}$, a subspace of $F(x)$. Find a basis for S.
Because $\sin ^{2} x+\cos ^{2} x=1, \cos ^{2} x$ isn't needed; we will show that $\left\{1, \sin x, \cos x, \sin ^{2} x\right\}$ is a basis for S. It suffices to prove that this set is independent, because the dimension of $\operatorname{Span}\left\{1, \sin x, \cos x, \sin ^{2} x, \cos ^{2} x\right\}=\operatorname{Span}\left\{1, \sin x, \cos x, \sin ^{2} x\right\} \leq 4$. Suppose we had a linear combination $a+b \sin x+c \cos x+d \sin ^{2} x=0$. This would have to hold for all x. Taking $x=0$ gives $a+c=0$, while taking $x=\pi$ gives $a-c=0$. Hence $a=c=0$. Taking $x=\pi / 2$ gives $b+d=0$, while taking $x=3 \pi / 2$ gives $-b+d=0$. Hence $b=d=0$, so the linear combination was degenerate, and hence this set is independent.

