Math 254 Fall 2013 Exam 6 Solutions

1. Carefully state the definition of "standard vector space". Give a vector from \mathbb{R}^{3} and a dependent set of two vectors from \mathbb{R}^{4}.
The standard vector space \mathbb{R}^{n} consists of the set of all ordered n-tuples of real numbers. $(1,2,3) \in \mathbb{R}^{3}$ and $\{(1,1,2,3),(2,2,4,6)\}$ is a dependent set of two vectors from \mathbb{R}^{4}.
2. Suppose that V is an n-dimensional vector space with basis S. Suppose that $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is independent in V. Prove that $\left\{\left[v_{1}\right]_{S},\left[v_{2}\right]_{S}, \ldots,\left[v_{k}\right]_{S}\right\}$ is independent in \mathbb{R}^{n}.

Suppose we have a linear combination in \mathbb{R}^{n} yielding zero: $a_{1}\left[v_{1}\right]_{S}+a_{2}\left[v_{2}\right]_{S}+\cdots+a_{k}\left[v_{k}\right]_{S}=\overline{0}$. Using the isomorphism properties, we have $a_{1}\left[v_{1}\right]_{S}+a_{2}\left[v_{2}\right]_{S}+\cdots+a_{k}\left[v_{k}\right]_{S}=\left[a_{1} v_{1}\right]_{S}+\left[a_{2} v_{2}\right]_{S}+\cdots+\left[a_{k} v_{k}\right]_{S}=$ $\left[a_{1} v_{1}+a_{2} v_{2}+\cdots a_{k} v_{k}\right]_{S}=[0]_{S}$. Since $[\cdot]_{S}$ is one-to-one, $a_{1} v_{1}+a_{2} v_{2}+\cdots a_{k} v_{k}=0$ in V. Since $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is independent, in fact $a_{1}=a_{2}=\cdots=a_{k}=0$; hence the original linear combination was necessarily degenerate.
3. In the vector space \mathbb{R}^{2}, set $S=\{(1,3),(2,5)\}$, a basis. Find the change-of-basis matrix from the standard basis E to S, and use this matrix to find $[(1,1)]_{S}$.

We find $P_{E S}$ by writing S as columns; i.e. $P_{E S}=\left(\begin{array}{cc}1 & 2 \\ 3 & 5\end{array}\right)$. We want $P_{S E}=P_{E S}^{-1}$, which we can find via formula or using the $(A \mid I) \rightarrow\left(I \mid A^{-1}\right)$ algorithm. $P_{S E}=\left(\begin{array}{cc}-5 & 2 \\ 3 & -1\end{array}\right)$. Lastly, $[(1,1)]_{S}=\left(\begin{array}{cc}-5 & 2 \\ 3 & -1\end{array}\right)\binom{1}{1}=$ $\binom{-3}{2}$.
The remaining two questions concern the vector space $P_{3}(t)$. Let $v_{1}=-t^{3}+t^{2}+t+1$, $v_{2}=t^{3}+2 t^{2}+2 t+1, v_{3}=4 t^{3}+3 t^{2}+3 t+1, v_{4}=4 t^{3}+4 t^{2}+4 t+2$.
4. Find a basis for $S=\operatorname{Span}\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right)$.

We use for coordinates the standard basis $E=\left\{1, t, t^{2}, t^{3}\right\}$, then put the result as rows in a matrix as $\left(\begin{array}{cccc}1 & 1 & 1 & -1 \\ 1 & 2 & 2 & 1 \\ 1 & 3 & 3 & 4 \\ 2 & 4 & 4 & 4\end{array}\right)$. We row reduce as $R_{2}-R_{1} \rightarrow R_{2}, R_{3}-R_{1} \rightarrow R_{3}, R_{4}-2 R_{1} \rightarrow R_{4}$, which gives $\left(\begin{array}{cccc}1 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 2 & 5 \\ 0 & 2 & 2 & 6\end{array}\right)$. $R_{3}-2 R_{2} \rightarrow R_{3}, R_{4}-2 R_{2} \rightarrow R_{4}$, which gives $\left(\begin{array}{cccc}1 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2\end{array}\right)$. Lastly, $R_{4}-2 R_{3} \rightarrow R_{4}$ to get $\left(\begin{array}{cccc}1 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$. We can now read off the basis from the rows, then translate back to $P_{3}(t)$, as $\left\{-t^{3}+t^{2}+t+1,2 t^{3}+t^{2}+t, t^{3}\right\}$.
5. Let $u=t^{3}+t^{2}+t+1$. Determine whether or not $u \in S=\operatorname{Span}\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right)$.

We can append a row to the matrix from (4), or directly using inspection with the basis we found: $u=1\left(-t^{3}+t^{2}+t+1\right)+2\left(t^{3}\right)$. (the answer is YES)

Extra: Consider the vector space $M_{2,2}$. Set $S=\left\{\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right),\left(\begin{array}{lll}0 & 2 \\ 2 & 4\end{array}\right)\right\}$. Determine whether or not $\left(\begin{array}{lll}1 & 2 \\ 2 & 1\end{array}\right) \in \operatorname{Span}(S)$.
We use for coordinates the standard basis $E=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$, then put the results as rows in a matrix as $\left(\begin{array}{llll}1 & 2 & 2 & 3 \\ 1 & 1 & 1 & 1 \\ 2 & 3 & 3 & 4 \\ 0 & 2 & 2 & 4\end{array}\right)$. This has row canonical form $\left(\begin{array}{llll}1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. We now include the vector $\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ as a new row, giving matrix $\left(\begin{array}{llll}1 & 2 & 2 & 3 \\ 1 & 1 & 1 & 1 \\ 2 & 3 & 3 & 4 \\ 0 & 2 & 2 & 4 \\ 1 & 2 & 2 & 1\end{array}\right)$. This has row canonical form $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$, which is different (higher rank), so the answer is NO.

