## Math 254 Fall 2013 Exam 7 Solutions

1. Carefully state the definition of "basis". Give two examples from $P_{1}(t)$.

A basis is a set of vectors that is independent and spanning. Two examples are $\{1, t\}$ and $\{2,1+t\}$.
2. Suppose that $V$ is a vector space with some inner product $\langle\cdot, \cdot\rangle$. Recall the derived norm is given by $\|u\|=\sqrt{\langle u, u\rangle}$. Prove that $\|k v\|=|k|\|v\|$ for all $v \in V$ and for all $k \in \mathbb{R}$.
Let $v \in V$ and $k \in \mathbb{R}$ be arbitrary. We calculate $\|k v\|=\sqrt{\langle k v, k v\rangle}=\sqrt{k\langle v, k v\rangle}=$ $\sqrt{k^{2}\langle v, v\rangle}=|k| \sqrt{\langle v, v\rangle}=|k|\|v\|$. In the second and third inequalities we used the linearity of an inner product in the first and second coordinate, respectively.
The remaining problems all concern the inner product on $\mathbb{R}^{3}$ defined by $\langle x, y\rangle_{A}=x^{T} A y$, where $A$ is the positive definite matrix $\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$. Set $u=(0,1,1)^{T}, v=(1,1,0)^{T}$.
3. Find the projection of $u$ along $v$ and the angle between $u, v$.

We first calculate $\langle u, u\rangle_{A}=3,\langle u, v\rangle_{A}=2,\langle v, v\rangle_{A}=2$. Now $\operatorname{Proj}_{v} u=\frac{\langle u, v\rangle_{A}}{\langle v, v\rangle_{A}} v=\frac{2}{2} v=v$. The angle between $u, v$ is given by $\cos \theta=\frac{\langle u, v\rangle_{A}}{\|u\|\|v\|}=\frac{2}{\sqrt{3} \sqrt{2}}=\sqrt{\frac{2}{3}}$, so $\theta=\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)$.
(This turns out to not be a nice angle, so we can't simplify. It's $\approx 0.615$ radians or $\approx 35.3^{\circ}$.)
4. Find an orthonormal basis for $\operatorname{Span}(u, v)$.

We use Gram-Schmidt; let $w_{1}=v, w_{2}=u-\operatorname{Proj}_{v} u$. We can use what we found in (3) to get $w_{2}=u-v=(-1,0,1)$. $\left\{w_{1}, w_{2}\right\}$ is an orthogonal basis; to make it orthonormal we must divide each by its length. $\left\|w_{1}\right\|=\sqrt{2}$, as found in (3). We calculate $\left\|w_{2}\right\|=1$. Hence $\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),(-1,0,1)\right\}$ is an orthonormal basis for $\operatorname{Span}(u, v)$.
5. Find a basis for $\operatorname{Span}(u, v)^{\perp}$.

Solution 1: Since $\operatorname{Span}(u, v)$ is 2-dimensional and $\mathbb{R}^{3}$ is 3 -dimensional, we need a single vector orthogonal to both $u, v$. We may start with any vector not in $\operatorname{Span}(u, v)$, say $r=(1,0,0)$. We first calculate $r^{\prime}=r-\operatorname{Proj}_{w_{1}} r=r-\frac{1}{2} w_{1}=(1 / 2,-1 / 2,0)$. We now calculate $r^{\prime \prime}=$ $r^{\prime}-\operatorname{Proj}_{w_{2}} r^{\prime}=r^{\prime}-0$. Any multiple of this works as well, so we may as well clear the fractions, and take basis $\{(1,-1,0)\}$.
Solution 2: We again seek a single vector $r=(a, b, c)$. Since $\langle r, u\rangle_{A}=0$, we conclude that $a+b+2 c=0$. Since $\langle r, v\rangle_{A}=0$, we conclude that $a+b+c=0$. Hence $c=0$ and $a=-b$. We can pick $a$ arbitrarily as 1 ; this gives basis $\{(1,-1,0)\}$.

Extra: We continue our adventures with the inner product on $\mathbb{R}^{3}$ defined by $\langle x, y\rangle_{A}=x^{T} A y$, where $A$ is the positive definite matrix $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2\end{array}\right)$. Your task is to find an orthonormal basis for $\mathbb{R}^{3}$.
Let's start with the standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ and apply Gram-Schmidt. $f_{1}=e_{1}, f_{2}=$ $e_{2}-\frac{\left\langle e_{2}, f_{1}\right\rangle_{A}}{\left\langle f_{1}, f_{1}\right\rangle_{A}} f_{1}$. What joy, $\left\langle e_{2}, f_{1}\right\rangle_{A}=0$ so $f_{2}=e_{2}$ ! Now $f_{3}=e_{3}-\frac{\left\langle e_{3}, f_{1}\right\rangle_{A}}{\left\langle f_{1}, f_{1}\right\rangle_{A}} f_{1}-\frac{\left\langle e_{3}, f_{2}\right\rangle_{A}}{\left\langle f_{2}, f_{2}\right\rangle_{A}} f_{2}=$ $e_{3}-1 f_{1}-0 f_{2}=(-1,0,1)$. We now rescale $f_{1}, f_{2}, f_{3}$; as it happens $\left\|f_{1}\right\|=\left\|f_{2}\right\|=\left\|f_{3}\right\|=1$ so in fact $\{(1,0,0),(0,1,0),(-1,0,1)\}$ is an orthonormal basis.

