Math 254 Fall 2013 Exam 8 Solutions

1. Carefully state the definition of "vector space". Give two three-dimensional examples.

A vector space is a collection of objects (called vectors), a set of scalars (typically \mathbb{R}), and a way to add vectors and multiply vectors by scalars. Two familiar three-dimensional examples are \mathbb{R}^{3} and $P_{2}(t)$.
2. Carefully state the definition of "linear transformation". Give two examples on $P_{2}(t)$.

A linear transformation is a function f from a vector space U to a vector space V, satisfying: (1) For all $u, v \in U, f(u+v)=f(u)+f(v)$, and (2) For all $u \in U$ and $k \in \mathbb{R}, f(k u)=k f(u)$. Many examples are possible such as $f(p(t))=p(t)$ (identity), $f(p(t))=-p(t), f\left(a t^{2}+b t+c\right)=$ $b t^{2}+(a+c) t+a$.
3. Consider the mapping $f: P_{1}(t) \rightarrow \mathbb{R}^{3}$ given by $f(a+b t)=(a, a+b, 2 b)$. Determine, with justification, whether or not f is linear.

1. Let $a+b t, a^{\prime}+b^{\prime} t$ be two arbitrary vectors in $P_{1}(t)$. We have $f(a+b t)+f\left(a^{\prime}+b^{\prime} t\right)=$ $(a, a+b, 2 b)+\left(a^{\prime}, a^{\prime}+b^{\prime}, 2 b^{\prime}\right)=\left(a+a^{\prime}, a+b+a^{\prime}+b^{\prime}, 2 b+2 b^{\prime}\right)=\left(a+a^{\prime},\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right), 2\left(b+b^{\prime}\right)\right)=$ $f\left(\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) t\right)=f\left((a+b t)+\left(a^{\prime}+b^{\prime} t\right)\right)$. This is the first required property.
2. Let $a+b t$ be arbitrary in $P_{1}(t)$, and let $k \in \mathbb{R}$. We have $k f(a+b t)=k(a, a+b, 2 b)=$ $(k a, k a+k b, 2 k b)=f(k a+k b t)$. This is the second required property, so the answer is YES.
3. Consider the linear mapping $g: \mathbb{R}^{3} \rightarrow P_{2}(t)$ given by $g((a, b, c))=a+(b+c) t+a t^{2}$. Find a basis for the kernel of g, and find a basis for the image of g.

If (a, b, c) is in the kernel of g, then $g((a, b, c))=a+(b+c) t+a t^{2}=0$, so $a=0, b+c=0, a=0$. This is a one-dimensional space, with basis $\{(0,1,-1)\}$.
By the rank-nullity theorem, $\operatorname{dim}(\operatorname{Im} g)+\operatorname{dim}(\operatorname{Ker} g)=\operatorname{dim}\left(\mathbb{R}^{3}\right)$, so $\operatorname{dim}(\operatorname{Img})=2$ and any basis for $\operatorname{Im} g$ will consist of two (linearly independent) vectors. One example is $\left\{1+t^{2}, t\right\}$.
5. Let f, g be as in problems 3,4. Consider the linear mapping $h: P_{1}(t) \rightarrow P_{2}(t)$ given by $h=g \circ f$. Calculate $h(1+2 t$), and determine (with justification) whether h is an isomorphism.

We have $h(1+2 t)=(g \circ f)(1+2 t)=g(f(1+2 t))=g(1,3,4)=1+7 t+t^{2}$. The linear map h is NOT an isomorphism, and here are two possible explanations why not:

1. We calculated in Problem 4 that $\operatorname{dim}(\operatorname{Im} g)=2$, so $\operatorname{dim}(\operatorname{Im} h) \leq 2$. But $\operatorname{dim}\left(P_{2}(t)\right)=3$, so h cannot be onto.
2. By the rank-nullity theorem $\operatorname{dim}\left(P_{1}(t)\right)=\operatorname{dim}(\operatorname{Ker} h)+\operatorname{dim}(\operatorname{Im} h)$. Because $\operatorname{dim}\left(P_{1}(t)\right)=$ 2 and $\operatorname{dim}(\operatorname{Ker} h) \geq 0$, we must have $\operatorname{dim}(\operatorname{Im} h) \leq 2<\operatorname{dim}\left(P_{2}(t)\right)$, so h cannot be onto.

Extra: Consider the linear mapping $f: M_{2,2} \rightarrow M_{2,2}$ given by $f(A)=\frac{1}{2}\left(A+A^{T}\right)$. Find a basis for the kernel of f, and find a basis for the image of f. Are either of these spaces familiar?
Suppose $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is in the kernel of f. Then $0=f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\begin{array}{cc}a \\ (b+c) / 2 & (b+c) / 2 \\ d\end{array}\right)$, so $a=0=d$ and $\frac{1}{2}(b+c)=0$. This is a one-dimensional subspace with basis $\left\{\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\right\}$, also known as the set of all skew-symmetric 2×2 matrices. By the rank-nullity theorem, $\operatorname{dim}(\operatorname{Im} f)=3$; by applying f to each of $\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, we find a basis for $\operatorname{Im} f$ of $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$. This subspace is also known as the set of all symmetric 2×2 matrices.

