Math 254 Fall 2013 Exam 8 Solutions

1. Carefully state the definition of "vector space". Give two three-dimensional examples.

A vector space is a collection of objects (called vectors), a set of scalars (typically \mathbb{R}), and a way to add vectors and multiply vectors by scalars. Two familiar three-dimensional examples are \mathbb{R}^3 and $P_2(t)$.

2. Carefully state the definition of "linear transformation". Give two examples on $P_2(t)$.

A linear transformation is a function f from a vector space U to a vector space V, satisfying: (1) For all $u, v \in U$, f(u+v) = f(u) + f(v), and (2) For all $u \in U$ and $k \in \mathbb{R}$, f(ku) = kf(u). Many examples are possible such as f(p(t)) = p(t) (identity), f(p(t)) = -p(t), $f(at^2+bt+c) = bt^2 + (a+c)t + a$.

3. Consider the mapping $f : P_1(t) \to \mathbb{R}^3$ given by f(a + bt) = (a, a + b, 2b). Determine, with justification, whether or not f is linear.

1. Let a + bt, a' + b't be two arbitrary vectors in $P_1(t)$. We have f(a + bt) + f(a' + b't) = (a, a+b, 2b) + (a', a'+b', 2b') = (a+a', a+b+a'+b', 2b+2b') = (a+a', (a+a')+(b+b'), 2(b+b')) = f((a + a') + (b + b')t) = f((a + bt) + (a' + b't)). This is the first required property. 2. Let a + bt be arbitrary in $P_1(t)$, and let $k \in \mathbb{R}$. We have kf(a + bt) = k(a, a + b, 2b) = b(a, a + b, 2b)

(ka, ka + kb, 2kb) = f(ka + kbt). This is the second required property, so the answer is YES.

4. Consider the linear mapping $g : \mathbb{R}^3 \to P_2(t)$ given by $g((a, b, c)) = a + (b + c)t + at^2$. Find a basis for the kernel of g, and find a basis for the image of g.

If (a, b, c) is in the kernel of g, then $g((a, b, c)) = a + (b+c)t + at^2 = 0$, so a = 0, b+c = 0, a = 0. This is a one-dimensional space, with basis $\{(0, 1, -1)\}$.

By the rank-nullity theorem, $dim(Im g) + dim(Ker g) = dim(\mathbb{R}^3)$, so dim(Img) = 2 and any basis for Im g will consist of two (linearly independent) vectors. One example is $\{1 + t^2, t\}$.

5. Let f, g be as in problems 3,4. Consider the linear mapping $h : P_1(t) \to P_2(t)$ given by $h = g \circ f$. Calculate h(1+2t), and determine (with justification) whether h is an isomorphism.

We have $h(1+2t) = (g \circ f)(1+2t) = g(f(1+2t)) = g(1,3,4) = 1+7t+t^2$. The linear map h is NOT an isomorphism, and here are two possible explanations why not:

1. We calculated in Problem 4 that $dim(Im \ g) = 2$, so $dim(Im \ h) \le 2$. But $dim(P_2(t)) = 3$, so h cannot be onto.

2. By the rank-nullity theorem $dim(P_1(t)) = dim(Ker h) + dim(Im h)$. Because $dim(P_1(t)) = 2$ and $dim(Ker h) \ge 0$, we must have $dim(Im h) \le 2 < dim(P_2(t))$, so h cannot be onto.

Extra: Consider the linear mapping $f: M_{2,2} \to M_{2,2}$ given by $f(A) = \frac{1}{2}(A + A^T)$. Find a basis for the kernel of f, and find a basis for the image of f. Are either of these spaces familiar?

Suppose $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is in the kernel of f. Then $0 = f(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \begin{pmatrix} a & (b+c)/2 \\ (b+c)/2 & d \end{pmatrix}$, so a = 0 = d and $\frac{1}{2}(b+c) = 0$. This is a one-dimensional subspace with basis $\{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\}$, also known as the set of all skew-symmetric 2×2 matrices. By the rank-nullity theorem, $dim(Im \ f) = 3$; by applying f to each of $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, we find a basis for $Im \ f$ of $\{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}$. This subspace is also known as the set of all symmetric 2×2 matrices.