Math 254 Fall 2013 Exam 9 Solutions

1. Carefully state the definition of "vector space". Give two three-dimensional examples.

A vector space is a collection of objects (called vectors), a set of scalars (typically \mathbb{R}), and a way to add vectors and multiply vectors by scalars. Two familiar three-dimensional examples are \mathbb{R}^3 and $P_2(t)$.

2. Consider the linear mapping $g : \mathbb{R}^3 \to P_2(t)$ given by $g((a, b, c)) = a + (b + c)t + at^2$. Find a basis for the kernel of g, and find a basis for the image of g.

If (a, b, c) is in the kernel of g, then $g((a, b, c)) = a + (b + c)t + at^2 = 0$, so a = 0, b + c = 0, a = 0. This is a one-dimensional space, with basis $\{(0, 1, -1)\}$.

By the rank-nullity theorem, $dim(Im \ g) + dim(Ker \ g) = dim(\mathbb{R}^3)$, so $dim(Im \ g) = 2$ and any basis for $Im \ g$ will consist of two (linearly independent) vectors. One example is $\{1 + t^2, t\}$.

Fill in each of the following blanks with the best choice from:(A) Scalar, (B) Vector, (C) Finite Set of Vectors, (D) Vector Space, (E) None of the above.

- 3. $P_2(t)$ is a D.
- 4. \mathbb{R}^3 is a D.
- 5. $M_{2,2}$ is a D.
- 6. (1, 2, 3) is a B in \mathbb{R}^3 .
- 7. $\{(1,2,3)\}$ is a C in \mathbb{R}^3 .
- 8. $\{1, 2, 3\}$ is a E in \mathbb{R}^3 .
- 9. 1 + 2t is a E in $P_2(x)$.
- 10. 1 + 2t is a B in $P_2(t)$.
- 11. $\{1+2t\}$ is a C in $P_2(t)$.
- 12. (1, 2t) is a E in $P_2(t)$.
- 13. $\{(1, 2t)\}$ is a E in $P_2(t)$.
- 14. $\{1, 2t\}$ is a C in $P_2(t)$.
- 15. We take the span of a C.
- 16. A basis of $P_2(t)$ is a C.
- 17. In $M_{2,3}$, a C can be dependent.
- 18. In $M_{2,3}$, a D can be a subspace.
- 19. A norm takes as input a B.
- 20. A norm produces as output a A.
- 21. An inner product inputs two B.
- 22. An inner product outputs a A.

- 23. The domain of a linear transformation is a D.
- 24. The input to a linear transformation is a B.
- 25. The sum of two vectors is a B.
- 26. The sum of two scalars is a A.
- 27. The sum of a vector and a scalar is a E.
- 28. The sum of a vector and a vector space is a E.
- 29. The sum of two subspaces is a D.
- 30. In $P_2(t)$, the product of a scalar and a vector is a B.
- 31. In $P_2(t)$, the product of two scalars is a A.
- 32. In $P_2(t)$, the product of two vectors is a E.
- 33. The intersection of two subspaces is a D.
- 34. The intersection of two sets of vectors is a C.
- 35. The intersection of two vectors is a E.
- 36. The rowspace of a matrix is a D.
- 37. The kernel of a linear transformation is a D.
- 38. The image of a linear transformation is a D.
- 39. The solution set to a homogeneous linear system is a D.
- 40. The span of a set of vectors is a D.