## Math 254 Fall 2013 Exam 9 Solutions

1. Carefully state the definition of "vector space". Give two three-dimensional examples.

A vector space is a collection of objects (called vectors), a set of scalars (typically $\mathbb{R}$ ), and a way to add vectors and multiply vectors by scalars. Two familiar three-dimensional examples are $\mathbb{R}^{3}$ and $P_{2}(t)$.
2. Consider the linear mapping $g: \mathbb{R}^{3} \rightarrow P_{2}(t)$ given by $g((a, b, c))=a+(b+c) t+a t^{2}$. Find a basis for the kernel of $g$, and find a basis for the image of $g$.
If $(a, b, c)$ is in the kernel of $g$, then $g((a, b, c))=a+(b+c) t+a t^{2}=0$, so $a=0, b+c=0, a=0$. This is a one-dimensional space, with basis $\{(0,1,-1)\}$.
By the rank-nullity theorem, $\operatorname{dim}(\operatorname{Im} g)+\operatorname{dim}(\operatorname{Ker} g)=\operatorname{dim}\left(\mathbb{R}^{3}\right)$, so $\operatorname{dim}(\operatorname{Im} g)=2$ and any basis for Im $g$ will consist of two (linearly independent) vectors. One example is $\left\{1+t^{2}, t\right\}$.
Fill in each of the following blanks with the best choice from:
(A) Scalar, (B) Vector, (C) Finite Set of Vectors, (D) Vector Space, (E) None of the above.
3. $P_{2}(t)$ is a D .
4. $\mathbb{R}^{3}$ is a D .
5. $M_{2,2}$ is a D .
6. $(1,2,3)$ is a B in $\mathbb{R}^{3}$.
7. $\{(1,2,3)\}$ is a C in $\mathbb{R}^{3}$.
8. $\{1,2,3\}$ is a E in $\mathbb{R}^{3}$.
9. $1+2 t$ is a E in $P_{2}(x)$.
10. $1+2 t$ is a B in $P_{2}(t)$.
11. $\{1+2 t\}$ is a C in $P_{2}(t)$.
12. $(1,2 t)$ is a E in $P_{2}(t)$.
13. $\{(1,2 t)\}$ is a E in $P_{2}(t)$.
14. $\{1,2 t\}$ is a C in $P_{2}(t)$.
15. We take the span of a C.
16. A basis of $P_{2}(t)$ is a C.
17. In $M_{2,3}$, a C can be dependent.
18. In $M_{2,3}$, a D can be a subspace.
19. A norm takes as input a B.
20. A norm produces as output a A.
21. An inner product inputs two B.
22. An inner product outputs a A.
23. The domain of a linear transformation is a $D$.
24. The input to a linear transformation is a $B$.
25. The sum of two vectors is a B.
26. The sum of two scalars is a A.
27. The sum of a vector and a scalar is a E .
28. The sum of a vector and a vector space is a E.
29. The sum of two subspaces is a D.
30. In $P_{2}(t)$, the product of a scalar and a vector is a B .
31. In $P_{2}(t)$, the product of two scalars is a A.
32. In $P_{2}(t)$, the product of two vectors is a E.
33. The intersection of two subspaces is a D.
34. The intersection of two sets of vectors is a C.
35. The intersection of two vectors is a E.
36. The rowspace of a matrix is a $D$.
37. The kernel of a linear transformation is a D.
38. The image of a linear transformation is a D.
39. The solution set to a homogeneous linear system is a D.
40. The span of a set of vectors is a $D$.

