Math 254 Fall 2014 Exam 0 Solutions

1. Carefully state the definition of a linear function space. Give two examples, which must be vector spaces
A linear function space on a set of variables is the set of all linear functions of those variables. Some examples are $\operatorname{Span}(x, y), \operatorname{Span}(r, s, t), \operatorname{Span}(x)$.
2. Carefully state the definition of "nondegenerate span". Give a set from \mathbb{R}^{2} whose nondegenerate span is different from its span.

The nondegenerate span of a set of vectors is the set of all linear combinations of those vectors, except the all-zero linear combination. Examples: $\{(1,2)\},\{(1,2),(1,3)\}$.
3. Consider the subset of \mathbb{R}^{2} given by $S=\{(a, b): a \geq b\}$. Prove that S not a subspace of \mathbb{R}^{2}.
We need closure under vector addition and scalar multiplication. The latter fails; we need a specific counterexample, such as $(2,1) \in S$ but $(-4)(2,1)=(-8,-4) \notin S$. As it happens, S is closed under vector addition, but that is irrelevant here.
4. Consider the matrix space $M_{2,2}$. Prove that $\left\{\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 1 & 5\end{array}\right),\left(\begin{array}{lll}2 & 0 \\ 0 & 3\end{array}\right)\right\}$ is independent.

Suppose the set is dependent, then $a\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)+b\left(\begin{array}{ll}1 & 0 \\ 1 & 5\end{array}\right)+c\left(\begin{array}{cc}2 & 0 \\ 0 & 3\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, for some a, b, c not all zero. We add the LHS to get $\left(\begin{array}{cc}a+b+2 c & a \\ b & a+5 b+3 c\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. This gives us the system of equations $\{a+b+2 c=0, a=0, b=0, a+5 b+3 c=0\}$ which has only solution $a=b=c=0$. This contradiction proves independence.
5. Consider the polynomial space $P_{2}(t)$. Prove that $\left\{t^{2}-1, t-1\right\}$ is not spanning. We need to find one vector and prove it is not in the span. Many choices will work, for example t^{2}. Suppose $t^{2}=a\left(t^{2}-1\right)+b(t-1)=a t^{2}+b t+(-a-b)$. This gives us the system of equations $\{a=1, b=0,-a-b=0\}$. There are no solutions to this system, hence this set is not spanning.

