Math 254 Fall 2014 Exam 1 Solutions

1. Carefully state the definition of "polynomial space in s ". Give a set of two vectors, drawn from $P_{1}(s)$.
The polynomial space in s, denoted $P(s)$, is the set of all polynomials with real coefficients with variable s. A set of two vectors drawn from $P_{1}(s)$ is $\{2+3 s, 4-2 s\}$.
2. Let $u=\left[\begin{array}{cc}217-1\end{array}\right]$. For each of the following, specify what type of object v must be for the expression to be defined. If the expression can never be defined, write NONE.
(a) $u^{T} v+u v^{T}$

NONE: v must be a matrix, since juxtaposition denotes matrix multiplication. For $u^{T} v$ to make sense, v must have one row. For $u v^{T}$ to make sense, v must have three columns. But now $u^{T} v$ is a 3×3 matrix, while $u v^{T}$ is a 1×1 matrix, which cannot be added.
(b) $u \cdot v$
v must be a 3 -vector, i.e. a vector from \mathbb{R}^{3}. Row or column doesn't matter.
(c) $u \times v$
v must be a 3 -vector, i.e. a vector from \mathbb{R}^{3}. Row or column doesn't matter.
(d) $(u \cdot v) \times u$

NONE: $u \cdot v$ is a scalar, but a cross product demands a 3 -vector.
(e) $u \cdot(v \times u)$
v must be a 3 -vector, i.e. a vector from \mathbb{R}^{3}. Row or column doesn't matter.
3. Let $A=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right), B=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Compute $A B A^{T}$.

$$
A B A^{T}=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 4 \\
3 & 10
\end{array}\right)=\left(\begin{array}{ll}
1 & 4 \\
5 & 18
\end{array}\right) .
$$

4. Let $u=(1,0,-1), v=(0,2,3)$. Calculate $u \times v$.

METHOD 1: $u \times v=(\mathbf{i}-\mathbf{k}) \times(2 \mathbf{j}+3 \mathbf{k})=2(\mathbf{i} \times \mathbf{j})+3(\mathbf{i} \times \mathbf{k})-2(\mathbf{k} \times \mathbf{j})-3(\mathbf{k} \times k)=$ $2(\mathbf{k})+3(-\mathbf{j})-2(-\mathbf{i})=2 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}=(2,-3,2)$.
METHOD 2: $\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & -1 \\ 0 & 2 & 3\end{array}\right|=0 \mathbf{i}+0 \mathbf{j}+2 \mathbf{k}-0 \mathbf{k}-(-2) \mathbf{i}-3 \mathbf{j}=2 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}=(2,-3,2)$.
5. Let $u=(1,2,3), v=(x, y, 0)$. Find values for x, y such that u, v are orthogonal and also simultaneously $\|v\|=1$.
The orthogonality condition means that $0=u \cdot v=x+2 y$. The other condition means that $\sqrt{x^{2}+y^{2}+0^{2}}=1$, i.e. $x^{2}+y^{2}=1$. We plug $x=-2 y$ into the latter to get $(-2 y)^{2}+y^{2}=1$, or $4 y^{2}+y^{2}=1$ or $5 y^{2}=1$ or $y^{2}=\frac{1}{5}$. Hence $y= \pm \frac{1}{\sqrt{5}}$, and $x=-2 y$. This gives two possible answers: $\left(\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right)$ and its negative.

