Math 254 Fall 2014 Exam 10 Solutions

1. Carefully state the definition of "matrix space" $M_{m, n}$. Name every six-dimensional matrix space.
$M_{m, n}$ is the vector space consisting of all $m \times n$ matrices with real entries. There are four six-dimensional ones: $M_{1,6}, M_{2,3}, M_{3,2}, M_{6,1}$.
2. True or false: For all square matrices $A, \operatorname{det}\left(A^{2}\right) \geq \operatorname{det}(A)$. Be sure to justify your answer.
The statement is false. We need just one counterexample, and to help us find it we seek $\operatorname{det}(A)>\operatorname{det}\left(A^{2}\right)=\operatorname{det}(A)^{2}$, which rearranges to $0>\operatorname{det}(A)(\operatorname{det}(A)-1)$, so we want a matrix A with $0<\operatorname{det}(A)<1$. Examples of such are $\left(\begin{array}{cc}1 & 0 \\ 0 & 0.5\end{array}\right)$ or just (0.5).

The remaining three problems concern the matrix $A=\left(\begin{array}{ccc}1 & 2 & a \\ a & a \\ 1 & -1 & a\end{array}\right)$, and the closely related system of linear equations $S=\{x+2 y+a z=1, a x+a y+z=1, x-y+a z=1\}$.
3. Calculate $|A|$ using Laplace expansion on the first column. Be sure to simplify your answer.
We have $|A|=1\left|\begin{array}{cc}a & 1 \\ -1 & a\end{array}\right|-a\left|\begin{array}{cc}2 & a \\ -1 & a\end{array}\right|+1\left|\begin{array}{c}2 \\ a\end{array}\right|=\left(a^{2}+1\right)-a(3 a)+\left(2-a^{2}\right)=3-3 a^{2}$.
4. Determine for which values of a (if any) the system S has a unique solution.
S will fail to have a unique solution exactly when $|A|=0$. From (3), this is equivalent to $3-3 a^{2}=0$, or $a^{2}=1$. Hence S will have a solution for all a except $a=1,-1$.
5. Determine which values of a (if any) will lead to the system S having a unique solution where $x=3$.
We use Cramer's rule: $3=x=\frac{\left|A_{1}\right|}{|A|}$, or $3|A|=\left|A_{1}\right|$. We calculate $\left|A_{1}\right|=\left|\begin{array}{ccc}1 & 2 & a \\ 1 & a \\ 1 & -1 & a \\ \text { D }\end{array}\right|=$ $3-3 a$, which we compute in any way we like. Hence $3\left(3-3 a^{2}\right)=3-3 a$. Dividing both sides by 3 we get $3-3 a^{2}=1-a$, or $3 a^{2}-a-2=0$. This has roots $a=-\frac{2}{3}, a=1$; however $a=1$ is invalid, without a unique solution. Hence $a=-\frac{2}{3}$ is the sole solution.

