Math 254 Fall 2014 Exam 11 Solutions

1. Carefully state the definition of "nondegenerate span". Give a set of vectors from $P_{2}(t)$ whose nondegenerate span does not include t.
The nondegenerate span of a set of vectors is the set of all their linear combinations except the all-zero linear combination. The set $\left\{1, t^{2}\right\}$ meets the conditions.
2. Let $A \in M_{n, n}$. Suppose that u, v are two eigenvectors of A, both corresponding to the same eigenvalue λ. Prove that $u+v$ is also an eigenvector for A corresponding to λ.
Because u, v are eigenvectors, we have $A u=\lambda u$ and $A v=\lambda v$. Adding, we get $A(u+v)=A u+A v=\lambda u+\lambda v=\lambda(u+v)$. Hence $u+v$ is an eigenvector.
3. Consider $A=\left(\begin{array}{cccc}7 & 1 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 7\end{array}\right)$. Find all the eigenvalues of A, and for each give the algebraic and geometric multiplicities. Find the characteristic and minimal polynomials of A.
A is in JCF. Its only diagonal entry is 7 , which appears 4 times. Hence $\lambda=7$ is the only eigenvalue, with algebraic multiplicity 4 . This means the characteristic polynomial is $\Delta_{A}(t)=(t-7)^{4}$. There are two Jordan blocks, hence the geometric multiplicity of $\lambda=7$ is 2 . The largest Jordan block is size 3 , hence the minimal polynomial is $\min _{A}(t)=(t-7)^{3}$.
4. Suppose for matrix B we have found the characteristic and minimal polynomials as $\Delta_{B}(t)=(t-3)^{2}(t-5)^{2}, \min _{B}(t)=(t-3)^{2}(t-5)$. Give the Jordan canonical form for B.
$\lambda=3$ is an eigenvalue of algebraic multiplicity $2\left(\right.$ from $\left.\Delta_{B}(t)\right)$. The largest Jordan block is of size $2\left(\right.$ from $\left.\min _{B}(t)\right)$, so that is the only Jordan block. $\lambda=5$ is an eigenvalue of algebraic multiplicity 2 (from $\Delta_{B}(t)$). The largest Jordan block is of size 1 (from $\left.\min _{B}(t)\right)$, so there must be two such blocks. Thus the JCF of B is $\left(\begin{array}{cccc}3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5\end{array}\right)$.
5. Find all the eigenvalues and eigenspaces of $C=\left(\begin{array}{ccc}2 & -3 & 4 \\ 0 & -1 & 3 \\ 0 & 0 & 2\end{array}\right)$.

We begin by calculating $\Delta_{C}(t)=\operatorname{det}(t I-C)=\left|\begin{array}{ccc}t-2 & 3 & -4 \\ 0 & t+1 & -3 \\ 0 & 0 & t-2\end{array}\right|=(t-2)^{2}(t+1)$, which is easy to calculate since the matrix is triangular. Hence the eigenvalues are $\lambda=2$ and $\lambda=-1$.
The eigenspace corresponding to $\lambda=2$ is the nullspace of $2 I-C=\left(\begin{array}{ccc}0 & 3 & -4 \\ 0 & 3 & -3 \\ 0 & 0 & 0\end{array}\right)$, which has row canonical form $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. Hence this eigenspace has basis $\{(1,0,0)\}$.
The eigenspace corresponding to $\lambda=-1$ is the nullspace of $2 I-C=\left(\begin{array}{ccc}-3 & 3 & -4 \\ 0 & 0 & -3 \\ 0 & 0 & -3\end{array}\right)$, which has row canonical form $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. Hence this eigenspace has basis $\{(1,1,0)\}$.

