Math 254 Fall 2014 Exam 12 Solutions

1. Carefully state the definition of "basis". Give a basis for $M_{2,2}$.

A basis is a set of vectors that is independent and spanning. $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$
2. Give an example of a quadratic form $q(x, y)$ such that there are two vectors $u=\left(x_{u}, y_{u}\right)$, $v=\left(x_{v}, y_{v}\right)$ with $q(u)=0$ and $q(v)=0$ but $q(u+v) \neq 0$.
Solution 1: This is exercise 12.35 in the book, and the solution given is $q(x, y)=x^{2}-y^{2}$, with $u=(1,1), v=(1,-1)$. Note that $u+v=(2,0)$ and $q(2,0)=4-0=4$.
Solution 2: We can find one systematically as $q^{\prime}(x, y)=x^{2}+y^{2}+k x y$. If we want $u=(2,-1), v=(-1,2)$, then $4+1-2 k=0$ and $1+4-2 k=0$, so $k=2.5$ and $q^{\prime}(x, y)=x^{2}+y^{2}+2.5 x y$. Now $u+v=(1,1)$ and $q^{\prime}(1,1)=1+1+2.5=4.5$.

The remaining problems all concern $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & 6 \\ 3 & 6 & 9\end{array}\right)$.
3. Find invertible matrix P and diagonal matrix D such that $D=P^{T} A P$.
$\left(\begin{array}{ccccc}1 & 2 & 1 & 1 & 0 \\ 2 & 0 \\ 3 & 1 & 6 & 0 & 1 \\ 6 & 9 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{cccccc}1 & 0 & 3 & 1 & 0 & 0 \\ 0 & -3 & 0 & -2 & 1 & 0 \\ 3 & 0 & 9 & 0 & 0 & 1\end{array}\right)$, via $R_{2}-2 R_{1} \rightarrow R_{2}$ and $C_{2}-2 C_{1} \rightarrow C_{2}$.
$\left(\begin{array}{cccccc}1 & 0 & 3 & 1 & 0 & 0 \\ 0 & -3 & 0 & -2 & 1 & 0 \\ 3 & 0 & 9 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{cccccc}1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -3 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & -3 & 0 & 1\end{array}\right)$, via $R_{3}-3 R_{1} \rightarrow R_{3}$ and $C_{3}-3 C_{1} \rightarrow C_{3}$.
Hence $D=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0\end{array}\right), P^{T}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right)$, and $P=\left(\begin{array}{ccc}1 & -2 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
4. Use D to find the rank and signature of A. Is A positive definite?

We have $n_{+}=1$ (\mathbf{p} in the book's notation), $n_{-}=1$ (\mathbf{n} in the book's notation), and $n_{0}=1 . \operatorname{rank}(A)=n_{+}+n_{i}=2, \operatorname{sig}(A)=n_{+}-n_{-}=0$. For A to be positive definite, $n_{-}=n_{0}=0$ would have to hold (equivalently, $n_{+}=3$ would have to hold). Since it doesn't, A is not positive definite.
5. Consider the quadratic form $q(x, y, z)=x^{2}+y^{2}+9 z^{2}+4 x y+6 x z+12 y z=1$, and the surface given by $q(x, y, z)=1$. Use A, P, D to diagonalize this quadratic form. Write the surface in the new variables, and show the relationship between the old and new variables. What is the name of this surface?
Note that $q(x, y, z)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)^{T} A\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$. Under the change of variables $P\left(\begin{array}{l}r \\ s \\ t\end{array}\right)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$, we have the diagonalized form $q(r, s, t)=\left(\begin{array}{c}r \\ s \\ t\end{array}\right)^{T} P^{T} A P\left(\begin{array}{c}r \\ s \\ t\end{array}\right)=\left(\begin{array}{c}r \\ s \\ t\end{array}\right)^{T} D\left(\begin{array}{c}r \\ s \\ t\end{array}\right)=r^{2}-3 s^{2}+$ $0 t^{2}$. The surface becomes $r^{2}-3 s^{2}+0 t^{2}=1$, which is called a hyperbolic cylinder.

