Math 254 Fall 2014 Exam 2a Solutions

1. Carefully state the definition of matrix space $M_{m,n}$. Give a set of two vectors, drawn from $M_{2,2}$.

 $M_{m,n}$ is the set of all matrices with real coefficients, *m* rows, and *n* columns. A correct example must be be a set (with curly braces) containing two different 2 × 2 matrices. One possible answer is $\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\}$

2. List, in any order, the three elementary operations that leave unchanged the solution set to a system of linear equations.

E1: Interchange two equations. E2: Multiply any equation by a *nonzero* constant. E3: Add a multiple of one equation to another.

3. Solve the following system of equations using back-substitution. Show your work.

 $\begin{array}{rcl} 6x_1+3x_2+2x_3-x_4&=&4\\ 5x_2+3x_3+2x_4&=&5\\ &-7x_3+3x_4&=&15\\ &2x_4&=&10\\ \end{array}$ Step 1: $2x_4=10$ gives $x_4=5.$ Step 2: $-7x_3+3(5)=15$ gives $x_3=0.$ Step 3: $5x_2+3(0)+2(5)=5$ gives $x_2=-1.$ Step 4: $6x_1+3(-1)+2(0)-(5)=4$ gives $x_1=2.$ In summary, $(x_1,x_2,x_3,x_4)=(2,-1,0,5),$ a unique solution.

- 4. Find the line of best fit for the following set of points: $\{(-2, 2), (1, 1), (3, 3), (4, 4)\}$. We calculate $N = 4, \sum x = 6, \sum x^2 = 4 + 1 + 9 + 16 = 30, \sum y = 10, \sum xy = -4 + 1 + 9 + 16 = 22$. This gives the system $\{4b + 6m = 10, 6b + 30m = 22\}$, which has unique solution $b = 2, m = \frac{1}{3}$. Hence the desired line is $y = \frac{1}{3}x + 2$.
- 5. Give a system of three equations in unknowns x, y with no solutions, with the additional property that none of the three lines has the same slope as either of the others.

Many solutions are possible; the key is to take three lines forming a triangle in the plane. $\{x = 2, y = 3, x + y = 1\}$ is a simple example. Another is $\{x + y = 1, x - y = 0, x = 10\}$.