Math 254 Fall 2014 Exam 2a Solutions

1. Carefully state the definition of matrix space $M_{m, n}$. Give a set of two vectors, drawn from $M_{2,2}$.
$M_{m, n}$ is the set of all matrices with real coefficients, m rows, and n columns. A correct example must be be a set (with curly braces) containing two different 2×2 matrices. One possible answer is $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\right\}$
2. List, in any order, the three elementary operations that leave unchanged the solution set to a system of linear equations.
E1: Interchange two equations. E2: Multiply any equation by a nonzero constant.
E3: Add a multiple of one equation to another.
3. Solve the following system of equations using back-substitution. Show your work.

$$
\begin{aligned}
6 x_{1}+3 x_{2}+2 x_{3}-x_{4} & =4 \\
5 x_{2}+3 x_{3}+2 x_{4} & =5 \\
-7 x_{3}+3 x_{4} & =15 \\
2 x_{4} & =10
\end{aligned}
$$

Step 1: $2 x_{4}=10$ gives $x_{4}=5$. Step 2: $-7 x_{3}+3(5)=15$ gives $x_{3}=0 . \quad$ Step 3: $5 x_{2}+3(0)+2(5)=5$ gives $x_{2}=-1$. Step 4: $6 x_{1}+3(-1)+2(0)-(5)=4$ gives $x_{1}=2$. In summary, $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,-1,0,5)$, a unique solution.
4. Find the line of best fit for the following set of points: $\{(-2,2),(1,1),(3,3),(4,4)\}$. We calculate $N=4, \sum x=6, \sum x^{2}=4+1+9+16=30, \sum y=10, \sum x y=$ $-4+1+9+16=22$. This gives the system $\{4 b+6 m=10,6 b+30 m=22\}$, which has unique solution $b=2, m=\frac{1}{3}$. Hence the desired line is $y=\frac{1}{3} x+2$.
5. Give a system of three equations in unknowns x, y with no solutions, with the additional property that none of the three lines has the same slope as either of the others.
Many solutions are possible; the key is to take three lines forming a triangle in the plane. $\{x=2, y=3, x+y=1\}$ is a simple example. Another is $\{x+y=1, x-y=0, x=10\}$.

