Math 254 Fall 2014 Exam 2b Solutions

1. Carefully state the definition of the standard vector space \mathbb{R}^{n}. Give an independent set of two vectors, drawn from \mathbb{R}^{3}.
\mathbb{R}^{n} is the set of all n-tuples of real numbers. Correct answers to the second part must be sets containing two 3 -tuples, such as $\{(1,2,3),(1,1,1)\}$ or $\{(1,0,0),(0,1,0)\}$.
2. Prove or disprove the following statement:

For all 2×2 matrices A, B, each in echelon form, their sum $A+B$ must be in echelon form.
The statement is false; to disprove it we need one specific counterexample. This consists of A, B that are both in echelon form, but their sum $A+B$ is NOT in echelon form. One counterexample is $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right], B=\left[\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right], A+B=\left[\begin{array}{ll}0 & 3 \\ 0 & 4\end{array}\right]$.
The remaining three problems concern the matrix $A=\left[\begin{array}{ccccc}1 & 3 & -3 & 0 & -4 \\ 0 & 0 & 1 & 3 & -1 \\ 3 & 9 & -2 & 5 & -3 \\ 2 & 6 & 3 & -1 & 11 \\ 5 & 15 & 0 & -7 & 17\end{array}\right]$.
3. Place A in echelon form. Be sure to justify each step.
$A \rightarrow\left[\begin{array}{ccccc}1 & 3 & -3 & 0 & -4 \\ 0 & 0 & 1 & 3 & -1 \\ 0 & 0 & 7 & 5 & 9 \\ 0 & 0 & 9 & -1 & 9 \\ 0 & 0 & 15 & -7 & 37\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 3 & -3 & 0 & -4 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -16 & -1 \\ 0 & 0 & 0 & -28 & 16 \\ 0 & 0 & 0 & -52 & 28\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 3 & -3 & 0 & -4 \\ 0 & 0 & 1 & - & -1 \\ 0 & 0 & 0 & -16 & 16 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ (in echelon form)
Step 1: $R_{3}-3 R_{1} \rightarrow R_{3}, R_{4}-2 R_{1} \rightarrow R_{4}, R_{5}-5 R_{1} \rightarrow R_{5}$
Step 2: $R_{3}-7 R_{2} \rightarrow R_{3}, R_{4}-9 R_{2} \rightarrow R_{4}, R_{5}-15 R_{2} \rightarrow R_{5}$
Step 3: $R_{4}-\frac{28}{16} R_{3} \rightarrow R_{4}, R_{5}-\frac{52}{16} R_{3} \rightarrow R_{5}$
4. Place A in row canonical form. Be sure to justify each step. You should begin with your answer from (3).
$(3) \rightarrow\left[\begin{array}{ccccc}1 & 3 & -3 & 0 & -4 \\ 0 & 0 & 1 & 3 & -1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 3 & -3 & 0 & -4 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 3 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ (in row canonical form)
Step 1: $\frac{-1}{16} R_{3} \rightarrow R_{3} \quad$ Step 2: $-3 R_{3}+R_{2} \rightarrow R_{2} \quad$ Step 3: $3 R_{2}+R_{1} \rightarrow R_{1}$
5. Write down a linear system for which A is an augmented matrix, and interpret your answer from (4) to write down the general solution for your system.

A possible system: $\{1 a+3 b-3 c+0 d=-4,0 a+0 b+1 c+3 d=-1,3 a+9 b-2 c+5 d=$ $-3,2 a+6 b+3 c-1 d=11,5 a+15 b+0 c-7 d=17\}$. This has general solution $\{(2-3 t, t, 2,-1): t \in \mathbb{R}\}$, or $\{(2-3 b, b, 2,-1): b \in \mathbb{R}\}$. Note there is one free variable and three bound variables.

