Math 254 Fall 2014 Exam 3 Solutions

1. Carefully state the definition of "spanning". Give a spanning set for $M_{2,3}$.

A set of vectors is spanning if their span is the entire vector space. A correct answer to the second part must consist of a set of at least six 2×3 matrices, such as $\left\{\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)\right\}$
2. Prove or disprove the following statement:

Every skew-symmetric 2×2 matrix must have all of its diagonal entries equal to 0 .
The statement is true. Proof: if $A=\left[a_{i, j}\right]$ is skew-symmetric, then $a_{i, j}=-a_{j, i}$ for each i and each j. In particular, $a_{1,1}=-a_{1,1}$ and $a_{2,2}=-a_{2,2}$. The only real number equal to its own negative is zero.
The remaining three problems concern the matrix $A=\left[\begin{array}{cccc}\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \hline & & \end{array}\right]$.
3. Find a symmetric matrix B and a skew-symmetric matrix C such that $A=B+C$.

Take $B=\frac{1}{2}\left(A+A^{T}\right)=\left[\begin{array}{ccc}\frac{1}{3} & 0 & \frac{2}{3} \\ 0 & -\frac{1}{3} & 0 \\ \frac{2}{3} & 0 & \frac{1}{3}\end{array}\right]$ and $C=\frac{1}{2}\left(A-A^{T}\right)=\left[\begin{array}{ccc}0 & -\frac{2}{3} & 0 \\ \frac{2}{3} & 0 & -\frac{2}{3} \\ 0 & \frac{2}{3} & 0\end{array}\right]$.
4. Calculate A^{-1}. Be sure to justify each step.

$$
\begin{aligned}
& {[A \mid I]=\left[\begin{array}{cccccc}
\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} & 1 & 0 & 0 \\
\frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} & 0 & 1 & 0 \\
\frac{2}{3} & \frac{2}{3} & \frac{1}{3} & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & -2 & 2 & 3 & 0 & 0 \\
2 & -1 & -2 & 0 & 0 & 0 \\
2 & 2 & 1 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & -2 & 2 & 3 & 0 & 0 \\
0 & 3 & -6 & -6 & 3 & 0 \\
0 & 6 & -3 & -6 & 0 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccccccc}
1 & 0 & -2 & -1 & 2 & 0 \\
0 & 3 & -6 & -6 & 3 & 0 \\
0 & 0 & 9 & 6 & -6 & 3
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{cccccc}
1 & 0 & 0 & \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
0 & 3 & 0 & -2 & -1 & 2 \\
0 & 0 & 9 & 6 & -6 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
0 & 1 & 0 & -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
0 & 0 & 1 & \frac{2}{3} & -\frac{2}{3} & \frac{1}{3}
\end{array}\right]=\left[I \mid A^{-1}\right] \text {. Hence } A^{-1}=\left[\begin{array}{ccc}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
-\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{2}{3} & \frac{1}{3}
\end{array}\right] \text {. }}
\end{aligned}
$$

Step 1: $3 R_{1} \rightarrow R_{1}, 3 R_{2} \rightarrow R_{2}, 3 R_{3} \rightarrow R_{3}$
Step 2: $-2 R_{1}+R_{2} \rightarrow R_{2},-2 R_{1}+R_{3} \rightarrow R_{3}$
Step 3: $(2 / 3) R_{2}+R_{1} \rightarrow R_{1},-2 R_{2}+R_{3} \rightarrow R_{3}$
Step 4: $(2 / 9) R_{3}+R_{1} \rightarrow R_{1},(2 / 3) R_{3}+R_{2} \rightarrow R_{2}$
Step 5: $(1 / 3) R_{2} \rightarrow R_{2},(1 / 9) R_{3} \rightarrow R_{3}$.
5. Determine whether or not A is orthogonal. Be sure to justify your answer.

Looking at A^{-1}, calculated in (4), we see that it equals A^{T}. Hence A is orthogonal.
ALTERNATE SOLUTION: Compute $A A^{T}$, and check that it equals I_{3}.

