Math 254 Fall 2014 Exam 5 Solutions

1. Carefully state the definition of "vector space". (you need not list the axioms). Give two explicit examples.

A vector space is a set of objects (called vectors), an underlying field (typically \mathbb{R} for us), and some way to add vectors and multiply vectors by scalars, so long as eight axioms are upheld. Two explicit examples are \mathbb{R}^{2} and $P_{2}(t)$.
2. Give the standard basis for $M_{3,2}$.

The standard basis contains the following six vectors, not necessarily in this order: $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right]\right\}$.
The remaining three problems concern the vector space $V=\mathbb{R}^{4}$ and the subspaces $S=\{(a, b, c, d): a+b=c+d=0\}, \quad T=\{(a, b, c, d): a+c=b+d=0\}$.
3. Find a basis for $S \cap T$.

We row reduce $\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$, in row canonical form. This has three pivots, and hence a one-dimensional solution space. A basis for this space is $\{(1,-1,-1,1)\}$. Note: it is not enough to find a vector in $S \cap T$, you need to prove that the space is one-dimensional.
4. Find a basis for S, a basis for T, and a basis for $S+T$.

We have $\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$ already in row canonical form; a basis for S is $\{(-1,1,0,0),(0,0,1,-1)\}$.
We have $\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$ already in row canonical form; a basis for T is $\{(-1,0,1,0),(0,1,0,-1)\}$. We now row reduce $\left[\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$, in row canonical form. This has three pivots; hence $S+T$ is three-dimensional, with basis $\{(1,0,0,-1),(0,1,0,-1),(0,0,1,-1)\}$.
5. Use your above answers to find the dimensions of the four vector spaces $S, T, S \cap T, S+T$, and interpret these in terms of the Dimension Theorem.

Counting the number of vectors in these bases, we get $\operatorname{dim}(S)=\operatorname{dim}(T)=2, \operatorname{dim}(S \cap$ $T)=1, \operatorname{dim}(S+T)=3$. The dimension theorem tells us that $\operatorname{dim}(S)+\operatorname{dim}(T)=$ $\operatorname{dim}(S \cap T)+\operatorname{dim}(S+T)$, which indeed holds true here.

