Math 254 Fall 2014 Exam 7 Solutions

1. Carefully state the definition of "linearly dependent". Give two different linearly dependent sets from $P_{1}(t)$.
A set of vectors is linearly dependent if a nondegenerate linear combination yields the zero vector. Examples: $\{1,2\},\{1, t, 1+t\}$. Common errors: not a set, not form $P_{1}(t)$.
2. Prove that $f(x)=x^{-1 / 2}$ is in $L^{1}(0,1)$ but not in $L^{3}(0,1)$.
$L^{1}: \int_{0}^{1}|f(x)|^{1} d x=\int_{0}^{1} x^{-1 / 2} d x=\left.\lim _{m \rightarrow 0+} 2 x^{1 / 2}\right|_{m} ^{1}=\lim _{m \rightarrow 0+} 2-2 \sqrt{m}=2$. Since this is finite, $f(x) \in L^{1}(0,1)$.
$L^{3}: \int_{0}^{1}|f(x)|^{3} d x=\int_{0}^{1} x^{-3 / 2} d x=\lim _{m \rightarrow 0+}-\left.2 x^{-1 / 2}\right|_{m} ^{1}=\lim _{m \rightarrow 0+}-2+\frac{2}{\sqrt{m}}=\infty$. Since this doesn't converge, $f(x) \notin L^{3}(0,1)$.
The remaining problems all concern the inner product on \mathbb{R}^{3} defined by $\langle x, y\rangle_{A}=x^{T} A y$, where A is the positive definite matrix $\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$. Set $u=(1,1,-2)^{T}, v=(1,2,-1)^{T}$.
3. Calculate $\langle u, u\rangle_{A},\langle v, v\rangle_{A},\langle u, v\rangle_{A}$.

$$
\begin{aligned}
& \langle u, u\rangle_{A}=\left(\begin{array}{lll}
1 & 1 & -2
\end{array}\right)\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & -2
\end{array}\right)\left(\begin{array}{c}
3 \\
0 \\
0
\end{array}\right)=9 . \\
& \langle v, v\rangle_{A}=\left(\begin{array}{lll}
1 & -1
\end{array}\right)\left(\begin{array}{ll}
3 & 0
\end{array} 0\right. \\
& 0
\end{aligned} 0
$$

4. Use the Gram-Schmidt process to find an orthogonal basis for $W=\operatorname{Span}(u, v)$.

Note: orthogonal means in the $\langle\cdot, \cdot\rangle_{A}$ sense.
We build orthogonal basis $\left\{w_{1}, w_{2}\right\}$ as follows: set $w_{1}=u$, and $w_{2}=v-\operatorname{proj}\left(v, w_{1}\right)=$ $v-\frac{\left\langle v, w_{1}\right\rangle_{A}}{\left\langle w_{1}, w_{1}\right\rangle_{A}} w_{1}=v-\frac{\langle v, u\rangle_{A}}{\langle u, u\rangle_{A}} u$. We calculated these in (3), so $w_{2}=(1,2,-1)^{T}-$ $\frac{6}{9}(1,1,-2)^{T}=\left(\frac{1}{3}, \frac{4}{3}, \frac{1}{3}\right)^{T}$. If desired, we can double-check that $\left\langle w_{1}, w_{2}\right\rangle_{A}=0$.
5. Let $W=\operatorname{Span}(u, v)$. Find a nonzero vector in W^{\perp}. Note: This means in the $\langle\cdot, \cdot\rangle_{A}$ sense.
Solution 1: Pick any vector, say $z=(1,0,0)$, not in W. Using the orthogonal basis from (4), we calculate $z-\operatorname{proj}\left(z, w_{1}\right)-\operatorname{proj}\left(z, w_{2}\right)$. We get $z-\frac{3}{9}(1,1,-2)-\frac{1}{5}\left(\frac{1}{3}, \frac{4}{3}, \frac{1}{3}\right)=$ $\left(\frac{3}{5},-\frac{3}{5}, \frac{3}{5}\right)$. If desired we can rescale to $(1,-1,1)$.
Solution 2: We seek $z=(a, b, c)$ to satisfy $\langle z, u\rangle_{A}=\langle z, v\rangle_{A}=0$. This gives the homogeneous linear system $\{3 a-3 c=0,3 a+3 b=0\}$, which has two pivots and a one-dimensional solution space. We can choose any one element from this space, such as $(1,-1,1)$.

