Math 254 Fall 2014 Exam 8 Solutions

1. Carefully state the definition of "basis". Give a basis for the nullspace of $\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 5 & 2\end{array}\right)$.

A basis in a vector space is a set of vectors that is independent and spanning. The nullspace of this matrix is a subspace of \mathbb{R}^{3}, one-dimensional since there is one free variable, so a basis is $\{(0,-2,5)\}$
2. Suppose that $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, and $F \circ F=I_{2}$ (identity). Prove that the nullity of F is 0 , and find such an F.
If the nullity weren't zero, there would be a nonzero vector v such that $F(v)=0$. But then $F \circ F(v)=F(F(v))=F(0)=0 \neq v$, which is a contradiction. Hence the nullity is zero. Many examples are possible, such as $F((a, b))=(-a,-b), G((a, b))=$ $(b, a), H((a, b))=(-a, b)$.
The remaining problems concern the function $F: P_{2}(t) \rightarrow \mathbb{R}^{2}$ given by $F(p(t))=$ $(p(2), p(-1))$.
3. Prove that F is a linear transformation.

Let $p(t), q(t)$ be arbitrary polynomials in $P_{2}(t)$, and let k be an arbitrary real number. First, $F(p(t)+q(t))=F((p+q)(t))=((p+q)(2),(p+q)(-1))=(p(2)+q(2), p(-1)+$ $q(-1))=(p(2), p(-1))+((q(2), q(-1))=F(p(t))+F(q(t))$. Second, $F(k p(t))=$ $F((k p)(t))=((k p)(2),(k p)(-1))=(k(p(2)), k(p(-1)))=k(p(2), p(-1))=k F(p(t))$.
4. Find the nullity of F, and a basis for its kernel.

Solution 1: Let $p(t) \in \operatorname{Ker}(F)$. Write $p(t)=a+b t+c t^{2}$. We have $0=F(p(t))=$ $(p(2), p(-1))=(a+2 b+4 c, a-b+c)$. Hence $\operatorname{Ker}(F)$ is isomorphic to the nullspace of matrix $\left(\begin{array}{ccc}1 & 2 & 4 \\ 1 & -1 & 1\end{array}\right)$, which has row canonical form $\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1\end{array}\right)$. This has one free variable, hence nullity $(F)=1$, and basis $\{(-2,-1,1)\}$. Hence $\operatorname{Ker}(F)$ has basis $\left\{-2-t+t^{2}\right\}$.
Solution 2: Let $p(t) \in \operatorname{Ker}(F)$. We have $p(2)=0, p(-1)=0$, so $(t-2)$ and $(t+1)$ each divide $p(t)$. Hence $p(t)=(t-2)(t+1) q(t)$, for some polynomial $q(t)$. However since $p(t) \in P_{2}(t)$, and $(t-2)(t+1)$ already has degree 2 , in fact $q(t)$ must be a constant polynomial. Thus $\operatorname{Ker}(F)=\left\{k\left(t^{2}-t-2\right): k \in \mathbb{R}\right\}$, a one-dimensional space with basis $\left\{t^{2}-t-2\right\}$. Since one-dimensional, the nullity of F is 1 .
5. Find the rank of F, and a basis for its image.

Solution 1: We apply the rank-nullity theorem to the previous problem. Since $\operatorname{dim}\left(P_{2}(t)\right)=$ 3 , the rank of F must be 2 . Since \mathbb{R}^{2} has dimension 2 , in fact F is onto, so a basis for its image is $\{(1,0),(0,1)\}$ (or any basis for \mathbb{R}^{2}).
Solution 2: We will show $(1,0)$ and $(0,1)$ are each in the image of F. Since these form a basis for the codomain, this will prove that F is onto. Further, $\{(1,0),(0,1)\}$ are a basis for its image, and the rank is 2 . We solve $\{p(2)=1, p(-1)=0\}$ to find $p(t)=\frac{1}{3}+\frac{1}{3} t$, and solve $\{q(2)=0, q(-1)=1\}$ to find $q(t)=\frac{2}{3}-\frac{1}{3} t$.

