Math 254 Fall 2014 Exam 9 Solutions

1. Carefully state the definition of "spanning". Give two spanning sets for \mathbb{R}^{2}.

A set of vectors is spanning if its span is the entire vector space. Examples are $\{(1,0),(0,1)\}$ and $\{(1,1),(1,-1)\}$.
2. Suppose that U is a vector space with (finite) basis B. Suppose that F, G are two linear transformations from U to U. Prove that if $[F]_{B}=[G]_{B}$ then $F=G$.
Solution 1: To prove two functions are equal, they have to have the same domain, and agree on each element of its domain. Both F, G have domain U. Let $u \in U$. We have $[F(u)]_{B}=[F]_{B}[u]_{B}=[G]_{B}[u]_{B}=[G(u)]_{B}$. Hence $F(u), G(u)$ have the same representations, and must be equal.
Solution 2: $[F]_{B},[G]_{B}$ are similar, since $[F]_{B}=I[G]_{B} I^{-1}$. Hence they represent the same linear transformation, so $F=G$.
The remaining three problems concern the vector space $V=\left\{\left(\begin{array}{cc}a & b \\ b & d\end{array}\right): a, b, d \in \mathbb{R}\right\}$, its basis $E=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$, and $F: V \rightarrow V$ given by $F:\left(\begin{array}{cc}a & b \\ b & d\end{array}\right) \rightarrow\left(\begin{array}{c}d \\ a+d-b \\ a+d-b \\ a\end{array}\right)$.
3. Prove that $F^{2}=F \circ F$ is the identity linear transformation.

Solution 1: $F\left(F\left(\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)\right)\right)=F\left(\left(\begin{array}{cc}d \\ a+d-b & a+d-b\end{array}\right)\right)=\left(\begin{array}{c}a \\ d+a-(a+d-b)\end{array} \stackrel{d+a-(a+d-b)}{d}.\right)=\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$.
Solution 2: From (4), we have $[F]_{E}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 0\end{array}\right)$. We calculate $[F]_{E}[F]_{E}=I_{3}$; hence $[F \circ F]_{E}=I_{3}$ and so F^{2} must be the identity map.
4. Calculate $[F]_{E}$.

We calculate: $F\left(e_{1}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$ so $\left[F\left(e_{1}\right)\right]_{E}=(0,1,1), F\left(e_{2}\right)=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$ so $\left[F\left(e_{2}\right)\right]_{E}=$ $(0,-1,0), F\left(e_{3}\right)=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ so $\left[F\left(e_{3}\right)\right]_{E}=(1,1,0)$. Combining, we get $[F]_{E}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 0\end{array}\right)$.
5. Find the row canonical form of $[F]_{E}$, and use this to determine the rank and nullity of F.
Starting with $[F]_{E}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 0\end{array}\right)$, we subtract the first and last rows from the middle row, then swap the first and last rows, and multiply the middle row by -1 . The result is I_{3}, which has three pivots and no columns without pivots. Hence the rank of F is 3 , and the nullity is zero.

