Math 254 Spring 2014 Exam 0 Solutions

1. Carefully state the definition of vector space $M_{2,2}$. Give two example vectors.
$M_{2,2}$ is the set of all 2×2 matrices with real entries. Some examples: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$.
2. Carefully state the definition of "spanning". Give two examples from $P_{1}(t)$.

A set of vectors S, drawn from vector space V, is spanning if $\operatorname{Span}(S)=V$. Examples from $P_{1}(t)$ include $\{1, t\}$, $\{1, t, 2 t\},\{1,1+t\}$.
3. Consider the subset of \mathbb{R}^{2} given by $S=\{(1,0),(2,3)\}$. Prove that S is spanning.

Let $(a, b) \in \mathbb{R}^{2}$ be arbitrary. After a side calculation, not shown, we use the linear combination $\frac{3 a-2 b}{3}(1,0)+\frac{b}{3}(2,3)=\left(a-\frac{2 b}{3}, 0\right)+\left(\frac{2 b}{3}, b\right)=(a, b)$. Hence $\mathbb{R}^{2} \subseteq \operatorname{Span}(S)$, so S is spanning.
A correct solution must prove that all elements of \mathbb{R}^{2} may be achieved as linear combinations from S.
4. Consider the subset of \mathbb{R}^{2} given by $T=\{(x, y): \sin x=\sin y\}$. Prove that T is not closed.
Note that $(0, \pi) \in T$ since $\sin 0=0=\sin \pi$. However, $\frac{1}{2}(0, \pi)=\left(0, \frac{\pi}{2}\right) \notin T$ since $\sin 0=0 \neq 1=\sin \frac{\pi}{2}$. Hence T is not closed under scalar multiplication.
Another approach is to note that $(0, \pi) \in T$ as before, and that $\left(\frac{\pi}{2}, \frac{\pi}{2}\right) \in T$. However their sum is $(0, \pi)+\left(\frac{\pi}{2}, \frac{\pi}{2}\right)=\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \notin T$ since $\sin \frac{\pi}{2}=1 \neq-1=\sin \frac{3 \pi}{2}$. Hence T is not closed under vector addition.

A correct solution must include a specific counterexample, with numbers, demonstrating that closure fails.
5. Consider the polynomial space $P(t)$. Prove that $\left\{t^{2}+3, t^{2}+4, t^{2}+5\right\}$ is dependent.

After a side calculation, not shown, we use the nondegenerate linear combination $1\left(t^{2}+\right.$ $3)-2\left(t^{2}+4\right)+1\left(t^{2}+5\right)=0$. Hence the set is dependent.
A correct solution must include a specific nondegenerate linear combination, with numbers, yielding 0 .

